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Introduction

This book is for all professionals, academics, and students who want to 

learn and master hands-on skills in the domains of natural language 

processing (NLP) and generative AI (GenAI).

This book assumes its readers have intermediate skills in machine 

learning, deep learning, and, most importantly, Python. The book 

begins with the basics and gradually progresses to advanced concepts in 

transformer models and generative AI.

The authors expect you to read this book with a Python editor on a 

decent computing device, preferably with 8 GB RAM and I5 (or above) or 

equivalent CPU. It’s a hands-on book, which will benefit you only if you 

program the code snippets given in the book as you go along.

All the code and datasets used in this book are available at  https://

github.com/Apress/Mastering-Text-Analytics.

https://github.com/Apress/Mastering-Text-Analytics
https://github.com/Apress/Mastering-Text-Analytics
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CHAPTER 1

Natural Language 
Processing: 
An Introduction

1.1  Why You Should Read This Chapter

This chapter serves as an introduction to the rest of the book, which 

explores language processing with the aid of machines, such as computers 

and robots. Why is natural language processing (NLP) important?

NLP can analyze language for its meaning. Here, by language, we mean 

the lingos like English, German, French, and Hindi, which humans use 

in their day-to-day transactions. NLP, with the aid of machines (primarily 

computer systems), has long fulfilled useful roles. Such systems can correct 

grammar, convert speech to text, and even translate between languages. 

Google Translator is one of the best examples of such translators. NLP can 

help machines communicate with humans in their language. With the 

help of this technology, machines can automatically read text, hear and 

interpret speech, and perform public sentiment analysis (on any topic, 

such as new product introductions and politics) on social media platforms 

like Twitter (now X).

https://doi.org/10.1007/979-8-8688-1582-9_1#DOI
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1.2  Introduction to Natural Language  
Processing

It’s time to formally introduce NLP. Amazon defines it as “a machine learning 

technology that gives computers the ability to interpret, manipulate, and 

comprehend human language.” Similarly, IBM defines it as “a subfield 

of computer science and artificial intelligence (AI) that uses machine 

learning to enable computers to understand and communicate with human 

language.”

Research in the field of NLP has made possible the new era of generative 

AI (GenAI) platforms like ChatGPT and many others. These types of software 

are called large language models (LLMs). GenAI) software can generate 

text, images, and even videos. NLP is already a routine part of life for many. 

This kind of users are not only concentrated in developed countries, but 

many developing countries across the globe can’t imagine their day-to-day 

working without NLP and GenAI software. Some common applications of 

NLP are powering search engines like those from Google and Microsoft, 

prompting chatbots used for customer service, speech-based GPS systems, 

and even digital assistants like Siri by Apple and Amazon’s Alexa.

The comparatively recent advances in the fields of data sciences and 

machine learning have greatly benefited the art and science of NLP. The 

field of NLP is largely divided into three areas.

• Understanding speech:  The translation of spoken 

languages like English and many others into human- 

readable text.

• Understanding  natural languages:  A machine’s 

(usually computers or equivalent) capability to 

understand language.

• Generation of natural languages:  This points us to 

ChatGPT-like applications that make natural language 

generation by computers.

Chapter 1  Natural laNguage proCessiNg: aN iNtroduCtioN
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The processing of natural languages used by humans is special 

for many reasons. First of all, the meaning of a word in a sentence or 

a paragraph is contextual, meaning the same word can have different 

meanings in different contexts.

According to Chris Manning, an AI professor at Stanford, NLP is a 

signaling system where symbols are discrete, symbolic, and categorical 

in nature. The same meaning can be conveyed in different ways. It can be 

speech, gesture, or signs. Each of these ways is unique and ambiguous. 

Other challenges that make it difficult are misspelled words, colloquialisms 

and slang, too many local languages and dialects (like there are over 3,000 

languages in the African continent alone), and so on.

While the science of NLP has its limitations, it still offers widespread 

benefits to humanity. With rapid developments in new technologies, many 

of these blocks are getting removed at an unprecedented rate.

Let’s consider the amount of data generated globally. Srinivasa- 

Desikan gives some concrete data: Google handles more than 1 trillion 

queries per year), Twitter has 1.6 billion queries every day, and WhatsApp 

handles more than 30 billion posts per day. Let’s look at the following 

figures.

• About 402.74 million terabytes of data are produced 

worldwide each day

• Approximately 147 zettabytes of data were 

produced in 2024

• Roughly 181 zettabytes of data will be produced in 2025

Figure 1-1 highlights the amount of data every year since 2020. 

Needless to say, much of this data consists of both structured and 

unstructured speech data. Companies generate immense value by 

analyzing this data using various machine learning techniques. They 

are valuable business insights that can be used in data-driven business 

Chapter 1  Natural laNguage proCessiNg: aN iNtroduCtioN
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decision-making. Many machine learning techniques for analyzing data 

are bundled under the banner of NLP, which is used to automatically 

extract valuable insights from both structured and unstructured text 

data. Companies utilize text analysis techniques to swiftly digest online 

data and documents generated and collected from numerous sources 

and transform them into actionable insights. Global tech companies like 

Amazon, Google, and Microsoft have taken a considerable lead over others 

in this direction.

*Machine learning is a developing branch of computer algorithms 

that can emulate human intellect by learning from the neighboring 

environment (both text and numeric data). [6]

Figure 1-1. Global data generation 2010 to 2025

NLP is discussed in the following sections.
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1.2.1  NLP Techniques

More formally, NLP is extracting high-quality and actionable information 

from text data. A vast amount of text data is available on websites, emails, 

reviews like those on Amazon and X (formerly Twitter), books, and research 

papers. This data is extracted, cleaned, formatted, and undergoes other 

data processing steps. This data processing is a laborious process, and it can 

account for up to 80% of the total time spent on the entire NLP project. Then, 

finally, statistical algorithms are used to derive patterns within the text data. 

Both machine learning and deep learning algorithms are utilized depending 

on the task at hand. The results are finally evaluated and interpreted for 

use in data-driven decision-making. Typical NLP tasks comprise text 

categorization and clustering, entity extraction, development of granular 

catalogs, text summarization, and many others. Sentiment analysis of social 

media data is one of the popular tasks performed using NLP techniques.

NLP uses many basic advanced techniques. Simpler ones include text 

classification, computing word frequencies, text extraction and clustering, 

part-of-speech tagging, sentiment analysis, collocation and concordance, 

stop word removal, and word sense disambiguation. Next, let’s briefly 

look at each of these simpler techniques. We examine more complex NLP 

techniques in later chapters.

1.2.2  Text Classification

Text classification is an analytical method used by professionals to categorize 

or sort text into different predefined groups. For example, a tweet can 

represent a positive or negative sentiment (positive is represented as 1 

and negative as 0). Now, suppose you have one thousand such tweets, all 

prelabelled labeled as either positive or negative. Now, you possibly train a 

machine simple machine learning algorithm, logistic regression. Though only 

one thousand tweets can be slightly insufficient data to properly train any 

machine learning algorithm, it can still work as a demonstrative example.
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Once the logistic regression model is trained, it can be used to classify 

any new tweet(s) as positive or negative. This type of project comes under 

the category of text classification. Logistic regression belongs to the linear 

family of machine learning algorithms, and it is probably the simplest in 

our kit of such tools. For completeness, there are other non-linear and 

more complex classification algorithms like random forests, XGBoost, and 

those from the neural networks family. All these complex algorithms can 

be deployed in text classification projects, provided the data is properly 

cleaned and preprocessed to the requirements of such text classification 

projects. These non-linear and more complex algorithms can be more 

accurate than logistic regression in some cases. The choice of algorithms 

depends upon many factors, like the nature of the task, availability of 

computing resources, skill availability, and available time. Figure 1-2 

depicts the working of a simple email classifier.
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Figure 1-2. Topic classification is used to flag incoming spam emails, 
which are filtered into a spam folder

1.2.3  Clustering

Let’s try to understand clustering with a simple example. Imagine you have 

ten different text paragraphs about a variety of topics. As of now, you are not 

given the titles of any of the text paragraphs. While reading, you discover 

that some are about linear algebra, some about the history of Europe, and 

some about quantum mechanics. You group the text paragraphs based on 

these topics. That’s a perfect example of text clustering!
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Having learned about text clustering, now let’s look at an example of 

how it can help us. Imagine you have managing large amounts of text data 

whose titles are known. Text clustering using machine learning algorithms 

can automatically organize such data into meaningful groups. This makes 

it easier to find and analyze information without having to read through 

everything.

The popularly used algorithms for text clustering are k-means 

clustering, hierarchical clustering, density-based spatial clustering of 

applications with noise (DBSCAN), Latent Dirichlet allocation (LDA), 

GloVe (global vectors for word representation), bidirectional encoder 

representations from transformers (BERT), and many more. Some of 

these techniques are used alone, while others are used in combination, 

depending on the task at hand. Some of these techniques are covered in 

the upcoming chapters.

Figure 1-3 depicts the clustering process in which an article’s content 

is categorized into the topic clusters of medical, technology, and sports. 

As shown, usually between the document and its clusters, there is an 

NLP clustering processor (or algorithm like k-means) that groups the 

generalized article’s content into the said groups. 
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Figure 1-3. Topic-wise clustering of a general article

1.2.4  Collocation

Let’s again start with a simple example. Suppose you are a cook in a five- 

star hotel. Over the years of cooking, you noticed that certain ingredients 

are often used together in recipes. Examples of such ingredients include 

“peanut butter” and “jelly,” or “salt” and “pepper”. Such pairs of ingredients 

are called collocations in the cooking domain. When it comes to text or 

language, collocations are pairs or groups of words that often go together 

and sound natural to native speakers.
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“Make a choice”, “Take a break”, “Heavy rain”, and “Do homework” are a 

few examples of English collocations. Understanding and using collocations 

can make your language sound more natural and fluent. As the words 

naturally fit together, collocations can help in both writing and speaking.

Word2Vec is a deep learning-based model that learns collocation word 

associations from large corpora (large bodies of text data). The key here is 

that words that often appear together have similar vector representations. 

We discuss this and many other techniques in the chapters to come.

1.2.5  Concordance (Computing Word  
Frequencies)

As usual, let’s again start with a simple example. Suppose you are 

attempting to write a relatively long article. In this article, you want to see 

how many times a specific word, say rain, has appeared. A concordance 

helps you do just that. The entire process of finding concordance (or 

word frequencies) is done with the help of computer programs. So, in the 

context of NLP, concordance is the process of finding the occurrences of a 

word or phrase in a text corpus, along with their contexts.

NLP-specific Python libraries like Natural Language Toolkit (NLTK) 

can be used to create concordances by processing and analyzing text 

data. We discuss this library in the early part of this book. Some other 

software tools are also capable of providing visual representations of word 

frequencies and their contexts.

1.2.6  Text Extraction

In the context of NLP-specific computer programs, text extraction simply 

means pulling out specific information of interest from a large amount 

of text corpus. Let’s try to understand with the help of a simple example. 
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Imagine you are reading a book and you only need the paragraphs 

that discuss your hobby, such as tennis. Text extraction is like using a 

highlighter to mark just those parts. Under text extraction, the main topics 

that are covered in this book are as follows.

• Named entity recognition (NER): Extracting various 

entities like names, dates, locations, and other specific 

items from a text corpus.

• Keyword extraction: Extracting important keywords 

or phrases that summarize the main theme of the 

document or text corpus.

• Part-of-speech tagging: Labeling words in a text 

corpus, including various nouns, verbs, and adjectives. 

It helps in understanding the structure and extracting 

relevant information.

• Regular expressions (RegEx): Using patterns to 

extract explicit text strings, such as finding addresses or 

phone numbers from the body of emails.

• Text summarization: Producing a summary of a longer 

text document and highlighting the key points.

1.2.7  Stop Word Removal

As usual, let’s again start with a simple example. Consider the sentence, 

“The cat is on a mat.” If all the stop words are removed, we are left with only 

“cat” and “mat,” which are the keywords. Stop word removal is a process 

used in NLP that filters out commonly occurring words. The type of words 

that are removed can be “and”, “the”, “is”, “in”, and so forth. These kinds of 

words don’t add much meaning to sentences. We call words like “and,” “the,” 

“is,” and “in” stop words in the context of NLP. Removing these words helps 

computers focus on the more important words in a text corpus.
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The stop word removal process begins by tokenizing the text. 

Tokenizing is breaking a text document (a document in the context of 

NLP is a complete piece of text) into individual words. The next step 

is to compare each word against a predefined list of stop words. If any 

word matches one on the list, it is to be removed from the text. This step 

helps reduce the dataset size (of individual words) and keeps the focus of 

analysis on the more significant words.

Popular libraries for stop word removal in NLP contain NLTK (Natural 

Language Toolkit), spaCy, Gensim, scikit-learn, and TextBlob. These 

libraries offer comprehensive functions for general text processing, 

including stop word removal. We introduce most of these libraries in the 

early part of this book. These libraries are utilized throughout this book 

when we discuss our case studies with code.

1.2.8  Word Sense Disambiguation (WSD)

Consider the simple sentence: “John noticed a bat flying in the sky.” Here, 

the word “bat” could have two distinct meanings. The first one is the 

nocturnal animal, and the second is equipment used in baseball, tennis, 

or cricket. WSD program analyzes the words surrounding “bat” and the 

syntactic structure of the entire sentence. It uses this information to find 

out which meaning of “bat” is most appropriate. This type of analysis 

is crucial to various NLP applications, including machine translation, 

sentiment analysis, and information retrieval. In this type of task, 

precise understanding of word meanings can enhance the performance 

and reliability of NLP-based computer programs. The WSD process 

(approximated in Figure 1-4) [8] can be summarized as follows.

• Context analysis: Focus on the target word and analyze 

its surrounding context within the sentence.

• Sense inventory: For context analysis, generally, a 

predefined inventory or dictionary is used that lists 

different meanings (senses) of the target word.
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• Feature extraction: Extract relevant features such as 

neighboring words, part-of-speech tags, and various 

syntactic dependencies.

• Disambiguation algorithm: Apply appropriate 

machine learning algorithms to determine the most 

likely sense (of the target word).

• Evaluation: Determine accuracy using various 

classification metrics like precision, recall, and F1 score 

against annotated data.

• Application: Integrate WSD techniques into NLP 

tasks that include the likes of machine translation and 

sentiment analysis.

This process may seem unfamiliar right now, but don’t worry. You can 

just read it once and proceed even if you don’t understand fully. We have 

included a code-based case study later in this book.

Figure 1-4. Workings of a WSD program
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1.3  Challenges in NLP

NLP and its allied branches are continually growing in huge leaps and 

bounds with their ability to compute words and text. Given that, human 

language is unbelievably complex, fluid, and inconsistent. All natural 

languages, including English, present serious challenges that NLP 

researchers are continuously trying to overcome. A 2016 research paper 

presents a relatively complete picture of the major challenges. This paper 

divides these challenges into five items as follows. 

• Challenge 1: It’s listed as the variety and complexity 

in dealing with diverse and nonhomogeneous data 

sources. The text documents (in any text corpus) 

that we deal with are available in diverse forms and 

formats. This variety can come from many sources, 

such as documents encoded in different formats; the 

text length can also vary depending on the document. 

Documents can be available in multiple languages, 

and so on.

• Challenge 2: NLP algorithms in many business and 

industrial application domains must deal with short 

and sparse texts. Such pieces of text do not offer 

adequate statistical redundancy, in contrast to bigger, 

standard corpora that NLP researchers employ.

NLP algorithms are unable to obtain dependable 

statistical evidence from the contents of such text 

documents. Class imbalance in data labels used in 

supervised NLP techniques can be another problem; 

for example, in card transaction data, fewer than 1% of 

transactions are fraudulent.
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• Challenge 3: Evaluating and interpreting the results 

of NLP algorithms can be challenging due to the 

inherent subjectivity in certain business applications. 

For example, consider sentiment analysis of tweets, 

text classification, and text clustering. Gold-standard 

datasets used in academic research are rarely available 

in industrial and real-life situations.

A related challenge is the lack of labeled data for 

training supervised machine learning modes for 

applications such as text categorization problems and 

sentiment analysis.

• Challenge 4: Human performance while dealing with 

natural languages is close to perfection. Given the 

current state of NLP research, computer programs 

cannot achieve this kind of 100% perfection. These 

limitations can be a challenge in certain situations, like 

dealing with space and aviation domains. A rising trend 

in many NLP applications, like text classification, is to 

use active learning to improve the NLP process and to 

get better results.

By the way, active learning is a machine learning 

method where algorithms interactively query the 

user (or another source) to label new data points with 

the desired outputs. Imagine a computer program 

is learning to recognize different car models. The 

program might ask for human intervention when 

it identifies a specific car model in the photos, and 

it is not able to name it. These types of human or 

external agent interventions can improve the overall 

performance of the program.
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• Challenge 5: While dealing with real-live and dynamic 

text data, as dealt with in certain business situations. 

This type of situation arises in applications that support 

decision-making in mission-critical events. In such 

cases, data containing text is required to be processed 

and get results in a timely and efficient way.

A related challenge can be the rate at which data is 

generated in certain data streams. For example, in 

certain short messaging applications (tweets), around 

6000 messages are generated every second on average. 

Accurately processing such high-paced text streams 

can be extremely challenging, as they demand a timely 

analysis to extract relevant and meaningful information 

from their contents.

These challenges can be viewed from multiple angles, and many more 

challenges can be identified for the NLP projects. This section serves 

the purpose of an introductory section. You will encounter many other 

challenges and their solutions as we progress through the book.

1.4  Applications of NLP

NLP applies to both text and speech, and it is equally applicable to all 

human languages—both spoken and written. So, there are numerous 

applications of NLP. Due to space limitations, we can only present a 

small fraction of them. Most of us interact with NLP almost on a daily 

basis, knowingly or otherwise. You might be familiar with applications 

like Siri personal assistant on spell checkers in word processors, iPhone, 

Alexa by Amazon, and many others. Some of these applications process 

human voice data and help resolve common queries. There are many 
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other examples of NLP-powered tools that you may already be familiar 

with. Examples include email spam filters, AI-powered web search 

engines, machine translation of text or speech, automatic document 

summarization, social media sentiment analysis, and so on.

NLP applications are used by many industries. It has become an 

integral part of many industrial processes. NLP is revolutionizing the way 

customers interact with establishments; examples include NLP-driven 

customer service chatbots. Many business processes contain a substantial 

amount of unstructured text data, including social media messages, 

surveys, and emails. NLP-driven techniques can automate such processes 

with relative ease. The following are some examples of how NLP is helping 

business processes. Figure 1-5 depicts some interesting use cases of NLP.
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Figure 1-5. NLP use cases

1.4.1  Banking and Financial Industry (BFSI)

This industry widely utilizes NLP-driven chatbots, and digital virtual 

assistants are capable of providing instant and personalized services. 

Many banks and financial institutes are using NLP-driven financial fraud 

detection systems. Such systems immediately alert the back office staff 
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when they detect any suspicious activity, such as fraudulent high-value 

credit card transactions. NLP can analyze a vast amount of text documents 

and extract only the relevant information necessary for maintaining 

regulatory compliance in industries such as pharmaceuticals and banking. 

NLP engines can extract insights from documents like financial reports, 

stock market data, and news articles that enable the industry to analyze 

risk and enable better decision-making. Many technologies-driven 

financial institutions are utilizing NLP in swift decision-making (and 

automation) in areas like loan and credit card applications, insurance 

claim documents, and contracts.

1.4.2  Healthcare

This industry encounters a large amount of unstructured text data, including 

medical records and other regulatory documents. Many healthcare 

companies are using NLP-driven engines to analyze the vast amount of 

information available in such documents to gain useful insights and to make 

data-driven decisions at all levels of the management hierarchy. The industry 

is utilizing clinical chatbots that assist doctors in diagnosing diseases. NLP 

analyzes patient feedback, online health forum data, and related social media 

messages to monitor patient sentiment and identify emerging health trends in 

community healthcare settings. This type of analysis is sometimes conducted 

in real-time, which can provide timely alerts for public health responses. This 

kind of swift response from the concerned professionals improves patient 

satisfaction as their concerns get addressed promptly.

1.4.3  Legal

Law professionals spend a large portion of their time searching for relevant 

information in the heap of a large collection of legal documents. This 

kind of legal research data can be a deciding factor in litigations, be it 

criminal or civil. NLP engines can automate a large portion of this legal 
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discovery process, and legal professionals can spare more time to focus on 

another critical part of their cases. NLP can do document categorization 

by analyzing a vast amount of documents. This way, legal professionals 

can efficiently manage and organize large volumes of documents, enabling 

quick retrieval of relevant information.

These were just a few examples. NLP has applications in many other 

areas. We discuss a few next.

1.4.4  Automate Routine Business Processes

Chatbots and digital personal assistants, such as Siri from Apple and Alexa from 

Amazon, can recognize queries spoken in the form of human voice. They can 

match it to the appropriate entries from corporate or government databases 

to fetch the relevant information for users. After gathering the necessary 

information, digital assistants can formulate a response that is an appropriate 

answer to the user’s query. In business operations, NLP automates data entry 

and extraction from word processors, email applications, and spreadsheets 

by processing and understanding unstructured data from emails, reports, and 

forms. They can even prioritize tasks based on content analysis, ensuring timely 

and organized execution. NLP NLP-based applications can automate many 

other routine, repetitive tasks to help organizations improve accuracy, reduce 

costs, and allocate resources more effectively.

1.4.5  Improve Search

NLP-based applications can improve keyword searches from a document 

or the Internet. They can help in the retrieval of relevant information 

for FAQ by disambiguating word senses based on context. For example, 

the English word spelled as “bat” can have different meanings based 

on the given context. NLP has the capability to resolve this ambiguity, 

and it is capable of fetching the right meaning of a word(s) based on the 

context. This can be very useful in identifying and resolving customer 

Chapter 1  Natural laNguage proCessiNg: aN iNtroduCtioN



21

queries in FAQ applications and chatbots. Additionally, NLP-powered 

search engines can handle voice search effectively. It allows users to 

interact with search systems through spoken language to further enhance 

accessibility and convenience. For search engines, NLP can analyze user 

behavior and preferences based on past searches, nature of interactions, 

and demographics to personalize search recommendations. This 

customization capability helps in predicting user intent and delivering 

custom-tailored results that align with individual preferences and 

interests.

1.4.6  Search Engine Optimization

Search engine optimization (SEO) is the art of optimizing websites and 

their content to advance a website’s visibility and ranking in search engine 

results pages (SERPs). The SEO process involves guessing which words 

people use the most when they search for the content of their interest 

(keyword research). It makes sure the content on websites is set up well 

for search engines, like Google Search, to understand. It is called on-page 

optimization. Another process, off-page optimization in SEO, involves 

activities outside the website to enhance the site’s authority and credibility 

by increasing online mentions and search engine rankings.

Overall, SEO helps websites to appear higher in search results, which 

makes it more likely for people to click on them. NLP is a great tool in the 

entire SEO process as it can understand and analyze the intent behind user 

queries. Integrating NLP in SEO helps businesses cater to user needs more 

accurately and ultimately helps boost search engine rankings and drive 

more organic traffic to websites. To understand it better, organic traffic is 

the visitors who come to a website through unpaid search engine results, 

which excludes paid advertisements.
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1.4.7  Machine Translation: Translating 
Languages Automatically Using NLP

This technology has been under development till recently. Now, it has 

become quite sophisticated. NLP applications can produce quite accurate 

translations over a wide variety of natural languages. NLP is capable of 

processing both text and speech data and translating it accurately from 

one language to the other. Such machine translations are grammatically 

correct, and they can properly convey the meaning in the proper context.

Figure 1-6 illustrates a simplified NLP model.  

Figure 1-6. Machine translation model

To a large extent, state-of-the-art NLP technology has overcome 

challenges such as handling ambiguous meanings of words in different 

contexts, preserving the original document’s style and tone, and preserving 

the exactness of specialized domains. Machine translation is still an 

evolving field application of NLP.
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1.4.8  Text Summarization: Condensing Large 
Text Information

A variety of test condensing definitions put the extent of summarization 

from 10% to 50% (see Figure 1-7). Text summarization applications use 

deep learning architectures, more specifically transformers. We discuss 

a few deep learning NLP techniques later in this book, but a detailed 

treatment of transformers is out of the scope. Extractive summarization 

techniques extract unchanged sentences from the original text corpus. 

These techniques are widely used by news aggregators, legal document 

reviewers, and academic researchers. The aim is to swiftly convey the 

important points of lengthy text documents to save readers time and effort.

Another category is LLMs like ChatGPT, which can generate original 

summaries using their own sentences (innovative) and are not available 

in the original text documents. They also use complex deep learning 

architectures based on transformer models. LLMs are very recent 

innovations that came up after 2020. Currently, such LLMs, though 

useful, can sometimes form some false innovative text on their own, a 

phenomenon known as hallucination. There is very serious research going 

on in the LLM domain, and their capabilities are improving with every new 

model release from the likes of Google and OpenAI.
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Figure 1-7. Document summarization

1.5  Recent Trends and Future Directions

NLP is a constantly evolving field. Many researchers from the domains 

of computer science and engineering, artificial intelligence and machine 

learning, and linguistics have actively contributed to the NLP. The main 

factors that have contributed immensely to the rapid developments in NLP are 

innovations in the fields of machine learning and an increase in computing 

power. Many recent trends seen in the NLP domain are made possible by 

deep learning and transformer models like BERT and GPT. These models 

have considerably improved the NLP capabilities of machines, particularly 

language understanding, translation, and generation. In recent years, the 

focus of NLP research has shifted to more context-aware and human-like 

communications. These developments are finding applications in enhancing 

the capabilities of chatbots and personal digital assistants, making them 

interact like humans. Other NLP areas that are gaining momentum are 

explainable NLP, bias mitigation, and ethical considerations of NLP programs.
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Generally, the training of NLP models can consume a considerable 

amount of resources, requiring a huge text corpus for training and other 

software and hardware computing resources. The efforts are for developing 

low-resource language processing capabilities. Another focus area is 

automatic multilingual language processing. These recent developments 

are shaping to improve the way machines comprehend and interact with 

human language. The following are some examples of notable NLP trends.

1.5.1  Transfer Learning: Advantages 
of Pre-Training

Pre-trained models (or transfer learning models) are deep learning models 

that are trained on a huge corpus of data, which may be the data available 

on the entire accessible Internet. In other words, the models have learning 

stored in them in the form of deep learning parameters of weights, biases, 

and maybe other tunable parameters. This learning can be transferred 

to the other use cases as well by simply changing the last couple of layers 

in the original neural network architecture. This arrangement saves the 

model training time and the training data for the new uses. It’s a huge 

saving on the overall resources as such. This phenomenon is popularly 

called transfer learning. They are t complex pre-trained deep learning 

models with uses in multiple use cases.

Transfer learning has revolutionized the NLP domain. They allow the 

model developers to transfer the pre-learned knowledge to other tasks, 

even if the tasks differ from those at the original training time. BERT, ELMo, 

GPT, ERNIE, ELECTRA, and RoBERTa are some of the popular pre-trained 

NLP models. These models were pre-trained on large corpora of text and 

other data and can be fine-tuned for other, more specific tasks. These 

models save huge time and resources for NLP programmers as they can 

eliminate the need to develop and train the NLP model code from scratch. 

Such pre-trained models require less labeled data for training while hugely 
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saving on computing resources like memory, storage, and CPU power. 

These pre-trained models are attractive options for developers for specific 

tasks like language translation, chatbots, social media sentiment analysis, 

topic modeling, and text summarization. Figure 1-8 compares transfer 

learning with the traditional approach.  

Figure 1-8. Traditional machine learning and pre-trained models

Wang et al. (2022) have given a complete review of the methods and 

frameworks of transfer learning models. They first give a short introduction 

to transfer learning models, which is followed by representative methods 

and applicable frameworks. This paper then goes on to analyze the effects 

and challenges of transfer learning models. Finally, the paper briefly 

concludes by reporting future research trends in the domain of pre-trained 

or (transfer learning models).

1.5.2  LLMs: Human-like Interactions

A large number of research papers are available that discuss the applications 

of LLMs, like ChatGPT, in education, medicine, and many other domains. 

Not surprisingly, almost everyone around knows about ChatGPT, and 

there is a large probability that they might have even used it for their 

benefit. Enkelejda et al. discuss specifically the current state of ChatGPT 

(and related software) and its applications in the education domain. They 

discuss how ChatGPT can be used to develop quality educational content 

that can improve student engagement and interaction and provide more 
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personalized learning experiences. The paper argues that, before using it, 

students and teachers must understand about the limitations and (at times) 

unanticipated brittleness of such systems. Continuous human oversight 

is necessary to deal with the expected bias of output from such LLMs. The 

paper finally concludes with recommendations for how to resolve the 

common challenges posed by LLMs.

By definition, LLMs are complex deep learning models that can 

understand and generate human language text. They can interact just 

like humans and can talk on almost any subject under the sun, though 

they can make serious mistakes at times (called hallucination). LLMs are 

trained on huge datasets, so the name is large. The size of LLM training 

datasets can range from a thousand to a million gigabytes or even 

larger. LLMs can be further trained via tuning: they can be fine-tuned 

to a particular task or domain. For example, LLMs can be fine-tuned to 

perform finance, healthcare, or education-related tasks. LLMs can be used 

in almost every domain, including chatbots, sentiment analysis, customer 

service, DNA research, and online search.

Some examples of popular LLMs include GitHub’s Copilot, OpenAI’s 

ChatGPT, Bard from Google, Llama from Meta, and Microsoft’s Bing Chat. 

More specific tasks that these LLMs can perform include text generation, 

summarization, translation, question answering, code generation 

(Copilot), and sentiment analysis.

1.5.3  Cross-Lingual and Multiple-Lingual 
Models: Handling Multiple Languages

Cross-lingual NLP models can comprehend multiple languages, and they 

are also capable of transferring knowledge between them. This can swiftly 

enable tasks like machine translation and cross-lingual understanding. 

Although a multiple-lingual model (MLM) models can also handle 

multiple languages simultaneously, this understanding comes without 
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necessarily transferring knowledge between multiple languages. MLMs 

can perform many different NLP tasks without the need to have separate 

language models for each language. A single MLM can handle multiple 

languages parallelly.

The tasks that can be performed by cross-lingual NLP models include 

machine translation, social media sentiment analysis, cross- lingual 

information retrieval, multilingual text classification, cross- lingual question 

answering, entity recognition, and language inference. At the same time, 

MLMs are useful in tasks like text classification, language detection, named 

entity recognition, part-of-speech tagging, sentiment analysis, machine 

translation, question answering, and text summarization.

The real-world examples of multilingual NLP models (MLMs) include 

Google Translate, Microsoft Translator, Amazon Comprehend, Facebook 

M2M-100, and IBM Watson Language Translator. In contrast, cross-lingual 

NLP models are represented by XLM-R (Cross-lingual Language  

Model–RoBERTa), mBERT (multilingual BERT), M2M-100 (Many-to-Many 

100), LASER (Language-Agnostic SEntence Representations), and T5  

(Text-To- Text Transfer Transformer).

1.5.4  Explainable NLP: Reason Model Results

In simple words, explainable NLP is like having a colleague who explains 

why she thinks something is true so that you can understand her 

reasoning. As put forward by Søgaard (2021) in his NLP book, explainable 

NLP is an emerging field that is lately getting a lot of attention from the 

tech community worldwide. Many industries, including healthcare and 

law, require the NLP developers to reason the predictions made by the 

models developed by them. In fact, it’s a legal requirement in many 

countries.

The knowledge of explainable NLP is essential for two reasons: one 

is confirming that the AI-driven solutions duly comply with local and 

international regulations, particularly in finance and other sensitive fields 
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like healthcare and legal. Another reason is that if we better understand 

how a model works, it can translate to reduce errors and develop 

capabilities anticipating the strengths and weaknesses of the model. Most 

importantly, a deep understanding of the inner workings of NLP models 

(explainable NLP) can help in avoiding unexpected behaviors of the NLP 

models that are already in production. This knowledge can also help in 

eliminating the impact of social biases, shown by many NLP and other 

machine learning models. Bias can appear in models because of the use 

of biased training data. Thus, the knowledge of explainable NLP translates 

into enhanced trust and confidence when deploying an NLP-powered 

solution in production.

1.5.5  Emergent Areas in NLP

The boundaries of NLP research are expanding with every passing day. 

Emotional AI is emerging, where NLP models can analyze text and speech 

patterns to realize human emotions. Developments in multilingual 

processing using LLMs like ChatGPT are defying language barriers and 

promoting global communication. The NLP models are getting integrated 

with other modalities that include images and speech (Multimodal NLP). 

NLP is getting integrated with augmented reality, which allows different NLP 

technologies to interact within immersive environments. With real-time and 

interactive NLP, the speed and responsiveness of NLP models will progress. 

This improves the capabilities and response time in applications like real-

time language translation (like those in international VIP conversations), 

video captioning, and Alexa-like interactive voice assistants.

Ethical and responsible AI is another research area that is getting 

considerable attention. Researchers are constantly working toward 

addressing biases, ensuring data privacy, and maintaining transparency 

in AI systems. Future NLP models, including those in the GenAI domain, 

are expected to show better generalization capabilities. They are more 

reliable, requiring less fine-tuning data to adjust to new tasks. In the 
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coming years, we can expect even larger, more powerful, and more reliable 

language models (LLMs included). These models have a sophisticated 

understanding of context, which allows them to produce more precise and 

contextually appropriate responses.

1.6  Short Business Case 1: Application 
of NLP in Medical Text Analysis

Around the globe, a vast amount of text data is generated by the healthcare 

industry in the form of including clinical notes, patient records, research 

articles, and much more. Extracting actionable insights from such text data 

is a challenging but essential task. These valuable insights can be helpful 

in improving patient care, advancing medical research, and streamlining 

operations. Many powerful NLP-based solutions exist today to enable 

the analysis and interpretation of medical texts in different languages—

transforming unstructured data into valuable information.

NLP applications can considerably add value to the patient healthcare 

business by extraction of critical information from electronic health 

records. For example, NLP can help by identifying patterns in symptoms, 

diagnoses, and treatments. This can ultimately help in early-stage disease 

diagnosis and more customized treatment plans. An NLP-assisted system 

could give an early warning for a potential diagnosis of diabetes in 

patients with specific symptom patterns and lab results. It can lead to the 

instigation of further and timely intervention by medical professionals.

1.6.1  Streamlining Clinical Research

Medical research professionals often dig through large piles of electronic 

and other health records (relevant research, patient data, and results of 

clinical trials) for their investigations. NLP applications can automate 

the extraction of relevant information from research articles, clinical 
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trial databases, and patient records. For example, these applications can 

quickly identify studies that match their criteria or find patients with 

specific genetic markers for targeted trials.

1.6.2  Improving Administrative Efficiency

Many administrative tasks, like coding, billing, and documentation, can 

be very laborious, time-consuming, and prone to errors at the same time. 

NLP applications can streamline these business processes by automating 

the extraction and classification of information needed for billing codes, 

patient insurance claims, and essential regulatory compliance. For 

example, NLP systems are capable of reading and interpreting doctors’ 

notes and other medical records to automatically extract billing codes. 

This can considerably reduce the administrative burden on healthcare 

providers and, at the same time, minimize the risk of errors.

1.6.3  Enhancing Data Accessibility

Manual storage and retrieval of patient and other health records is a very 

laborious and time-consuming task. NLP applications can automate the 

entire process. In fact, most healthcare establishments these days are 

already use these applications. By converting unstructured text records 

into structured data, NLP applications are capable of creating searchable 

databases of medical records. This enables quick access to patient histories 

and treatment outcomes, enabling quick decision-making and coordination 

among healthcare professionals. Additionally, NLP can also be used to 

create patient-friendly summaries (in their mother tongues, if required) 

of complex medical information. Such summaries in local languages can 

improve patient understanding and engagement in their care.

Chapter 1  Natural laNguage proCessiNg: aN iNtroduCtioN



32

1.6.4  Facilitating Predictive Analytics

NLP applications can make accurate data analysis to forecast patient 

outcomes and identify potential risks. NLP can analyze relevant data 

from unstructured medical texts and enhance predictive analytics in 

healthcare applications. For instance, by analyzing historical electronic 

health records, NLP applications can identify risk factors for readmission 

or complications. This can enable proactive interventions in patient 

treatments, improving patient outcomes and possibly reducing 

healthcare costs.

1.6.5  Business Case Conclusion

Along with these resource-saving applications of NLP applications in 

healthcare, there are many challenges like complexity and variability of 

medical records or language. Ensuring the accuracy and reliability of NLP 

applications is critical. It’s especially true in a medical context where even 

small errors can have serious consequences. No analysis in the world of AI 

is 1005 accurate—NLP included. Continuous refinement and development 

of more efficient algorithms and collaboration with medical professionals 

are necessary to further improve the precision and applicability of NLP in 

healthcare.

Medical NLP applications hold incredible potential for renovating 

healthcare by enhancing patient care, streamlining clinical research, 

improving administrative efficiency, and facilitating predictive analytics. 

By leveraging NLP technologies, healthcare professionals can unlock 

valuable insights from unstructured data, which can lead to better patient 

outcomes and more efficient healthcare systems. As NLP in healthcare 

continues to evolve, in the future, it can play a pivotal role in advancing 

personalized medicine and optimizing healthcare delivery.
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Many more business cases can be listed that utilize NLP for applications 

in other domains like healthcare, finance, legal, e-commerce, education, 

customer service, social media, marketing, news media, human resources, 

travel, and entertainment. The possibilities with NLP are endless. Figure 1-9 

depicts a few more use cases of NLP-based applications.  

Figure 1-9. More uses of NLP leveraged technologies

1.7  Short Business Case 2: NLP 
in Customer Service, Enhancing 
Customer Interaction

ABC Inc. is a leading apparel e-commerce company based in downtown 

New York. It is known for its varied product range and customer-first 

approach. In a couple of decades, as the company grows, the volume of 

online customer interactions also increases. Maintaining high levels of 

customer satisfaction becomes more important with every passing day. 

To solve this and some other related challenges, the company decided 

to implement a custom-made NLP application that can help enhance its 

customer service operations and maintain customer satisfaction levels.
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1.7.1  The Challenge

Prior to the implementation of the NLP solution, ABC Inc. was challenged 

with several issues in its customer service department.

• High volume of inquiries: The client service team 

faced many issues with managing the daily large 

number of inquiries. It led to delayed responses and 

degrading customer dissatisfaction.

• Inconsistent quality: The company has 24/7 

operations that are all manual. The quality of responses 

significantly depends on the agent. Many times, it led to 

customer complaints.

• High operational costs: For 24/7 operations, the 

company had to maintain a large customer service 

team. It was costly and faced with many other human 

resources challenges, including high attrition rates.

• Lack of insights: ABC Inc. was not able to analyze the 

customer sentiments and common issues based on 

the voice and other text data it had. It added to existing 

operational inefficiencies. Implementing proactive 

measures was one of the top priorities for the company.

1.7.2  Implementation of NLP

To overcome these challenges, ABC Inc. decided to leverage multiple NLP 

technologies, including automated chatbots, sentiment analysis from the 

customer inquiries text data, classification of text and voice inquiries, and 

natural language understanding (NLU).
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ABC Inc. introduced AI-powered chatbots that were capable of 

handling routine inquiries efficiently. Instant responses were provided 

to many of the routine inquiries. The training of these chatbots was done 

using historical customer service data to make it easier to understand 

and respond to common questions about orders, returns, and product 

information.

Customer sentiment analysis was done from customer feedback data 

from various channels, including emails, social media, and online reviews. 

This helped the company judge customer sentiment in real time and 

address issues promptly. Text classification solutions help to automatically 

classify incoming customer inquiries. This classification was done based 

on the content of inquiries. This classification helped in efficient routing 

to the appropriate department or escalation to human agents (manages if 

required) if necessary.

The newly implemented chatbots and virtual assistants were equipped 

with advanced NLU capabilities. They were capable of understanding the 

context and nuances of customer inquiries. This automation led to more 

accurate and helpful responses.

Figure 1-10. Critical elements that attract today's customers
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1.7.3  Results and Benefits

The implementation of NLP at ABC Inc. resulted in several significant 

benefits that included enhanced customer satisfaction levels, improved 

response time,

Improved Response Times: With the introduction of chatbots, ABC 

Inc. was able to provide instant responses to a large number of inquiries, 

significantly reducing wait times for customers, generating actionable 

insights, scalability of operations, and reducing costs. The company saved 

money by reducing human agents (for 24/7 operations) as chatbots started 

doing many inquiry-handling jobs. The generation of actionable insights 

into customer perceptions and common pain points enabled the company 

to proactively address issues and improve its products and services based 

on customer feedback. A high level of automation at the operational level 

made the scalability of the business possible with reduced costs. Now, 

during peak hours, almost 80% of inquiries were getting answered without 

the need for any human intervention.

1.7.4  Conclusion

The adoption of multiple NLP solutions has transformed customer service 

at ABC Inc. Automation is enhancing customer interaction and operational 

efficiency. Automated chatbots, sentiment analysis, text classification, and 

natural language understanding are being leveraged to increase efficiency 

at the operational level. ABC Inc. has mostly addressed the key challenges 

and secured significant benefits. As the company continues to grow, it 

plans to further refine its NLP capabilities. They plan to provide even 

better customer experiences and maintain their competitive edge at the 

same time in this highly competitive e-commerce industry.
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1.8  Example with Python

This section presents an NLP getting-started tutorial with an explanatory 

commentary. The Python code used in this tutorial is also well-

commented. The business problem is to predict whether the test tweets 

are positive or negative. The training data is provided with proper labels. 

And the test tweets have no labels. Our job is to write Python code to 

predict the test data tweets and to evaluate the F1 score of our model. We 

will be using a random forest algorithm to make our predictions.

1.8.1  NLP Tutorial

1.8.2  YouTube Comments Spam Detection 
Using Python

The first NLP tutorial uses the YouTube Spam Collection Dataset. We use 

a simple technique to convert the text data into a numeric format that can 

be processed by machine learning algorithms. Next, we apply the random 

forests algorithm to build a machine learning model. Finally, we make the 

predictions for the target variables and also evaluate our model’s accuracy. 

This book expects you to have some prior knowledge of Python and coding 

machine learning and deep learning (neural networks) models. Let’s jump 

into writing our code and try to understand it as we write it.

# Import the required libraries.

import pandas as pd

import numpy as np

# The below code is for working with machine learning model.

from sklearn import feature_extraction, linear_model,  

model_selection, preprocessing

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier
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from sklearn.metrics import accuracy_score

# Ignore warnings.

import warnings

warnings.filterwarnings('ignore')

 The Data

Let’s look at our data.

# Read the data files available in the same folder as this code.

Youtube01_psy = pd.read_csv('Youtube01-Psy.csv')

Youtube02_katyperry = pd.read_csv('Youtube02-KatyPerry.csv')

Youtube03_lmfao = pd.read_csv('Youtube03-LMFAO.csv')

Youtube04_eminem = pd.read_csv('Youtube04-Eminem.csv')

Youtube05_shakira = pd.read_csv('Youtube05-Shakira.csv')

# Let's check the datasets size.

print(Youtube01_psy.shape)

print(Youtube02_katyperry.shape)

print(Youtube03_lmfao.shape)

print(Youtube04_eminem.shape)

print(Youtube05_shakira.shape)

(350, 5)

(350, 5)

(438, 5)

(448, 5)

(370, 5)

# ACombine all five datasets.

combined_df = pd.concat([Youtube01_psy, Youtube02_katyperry, 

Youtube03_lmfao, Youtube04_eminem, Youtube05_shakira])

# Reset the index

combined_df.reset_index(drop=True, inplace=True)

combined_df.head(3)
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                                    COMMENT_ID        AUTHOR  \

0  LZQPQhLyRh80UYxNuaDWhIGQYNQ96IuCg-AYWqNPjpU        Julius NM

1  LZQPQhLyRh_C2cTtd9MvFRJedxydaVW-2sNg5Diuo4A      adam riyati

2  LZQPQhLyRh9MSZYnf8djyk0gEF9BHDPYrrK-qCczIY8  Evgeny Murashkin

                  DATE                               CONTENT  \

0  2013-11-07T06:20:48  Huh, anyway check out this you[tube] 

channel: ...

1  2013-11-07T12:37:15  Hey guys check out my new channel and 

our firs...

2  2013-11-08T17:34:21   just for test I have to say murdev.com

   CLASS

0      1

1      1

2      1

# Select only the useful "CONTENT" and "CLASS" columns.

combined_df = combined_df[["CONTENT", "CLASS"]]

# Randomly select 5 rows

random_sample = combined_df.sample(n=5)

print(random_sample)

                                                CONTENT  CLASS

987                            subscribe to my chanell       1

1727                            BEST SONG! GO SHAKI :D       0

1280  Share Eminem&#39;s Artist of the Year video so...      1

1241  MEGAN FOX AND EMINEM TOGETHER IN A VIDEO  DOES...      0

1126             I learned the shuffle because of them       0

Note the emojis and URLs in CONTENT and the misalignment due to 

spaces in CLASS.

combined_df.shape

(1956, 2)

# Map "0" to  "Not Spam" and 1 : "Spam."
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#combined_df['CLASS'] = combined_df['CLASS'].map({0 : "Not 

Spam", 1 : "Spam"})

# Randomly select 5 rows

random_sample = combined_df.sample(n=5)

print(random_sample)

                                                CONTENT  CLASS

1003               Check out this playlist on YouTube:       1

1455                                So freaking sad...       0

474   Imagine this in the news crazy woman found act...      0

1343  I know that maybe no one will read this but PL...      1

37    SUB 4 SUB PLEASE LIKE THIS COMMENT I WANT A SU...      1

# Seperate features and the target.

X = np.array(combined_df['CONTENT'])

y = np.array(combined_df['CLASS'])

X.shape

(1956,)

 Building Vectors

The words contained in every tweet are a good pointer of whether they are 

about a real disaster or not. In theory, this is not totally correct. We will still 

use it as our starting point in our first NLP tutorial.

The following uses scikit-learn’s CountVectorizer to count the words in 

each tweet and then turn them into a data format that our machine learn-

ing model can understand. A vector is, in this context, a set of numbers 

that a machine learning algorithm can understand. The example shows 

the related code, its usage, and output.

demo_text = ["Stella is a good girl. She loves to swim"] # Demo 

sentence

count_vectorizer = feature_extraction.text.CountVectorizer()  

# Instrantiate CountVectorizer()

count_vectorizer.fit(demo_text) # Fit the demo text
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print(count_vectorizer.vocabulary_) # Print results

{'stella': 5, 'is': 2, 'good': 1, 'girl': 0, 'she': 4,  

'loves': 3, 'to': 7, 'swim': 6}

# encode document

demo_vector = count_vectorizer.transform(demo_text)

print(demo_vector.shape)

print(demo_vector.toarray())

(1, 8)

[[1 1 1 1 1 1 1 1]]

There are eight number elements in the vector representing demo_text 

[[1 1 1 1 1 1 1 1]] (0 to 7) and the number of distinct words is also eight.

All the entries in the vector are 1 as no word in the demo_text is repeat-

ing (frequency of all words is 1).

For more information on CountVectorizer in Python, see https://

www.educative.io/answers/countvectorizer-in-python.

 A Second Example

Let’s try another example.

demo_text2 = ["The sky is blue. I wish to fly in the blue sky"] 

# Demo sentence 2

count_vectorizer = feature_extraction.text.CountVectorizer()  

# Instrantiate CountVectorizer()

count_vectorizer.fit(demo_text2) # Fit the demo text

print(count_vectorizer.vocabulary_) # Print results

{'the': 5, 'sky': 4, 'is': 3, 'blue': 0, 'wish': 7, 'to': 6, 

'fly': 1, 'in': 2}

# encode document

demo_vector = count_vectorizer.transform(demo_text2)
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print(demo_vector.shape)

print(demo_vector.toarray())

(1, 8)

[[2 1 1 1 2 2 1 1]]

We are simply counting the repetition of words and putting it in the 

vector. The words “the”, “sky”, and “blue” have a frequency of two each in 

the demo_text2. So, these three words are represented by two each in the 

demo vector [[2 1 1 1 2 2 1 1]].

 Counts for the First Five Entries

Let’s get counts for the first five entries in combined_df.

## let's get counts for the first 5 entries in 

"CONTENT" column.

demo_vectors = count_vectorizer.fit_transform(combined_

df['CONTENT'][0:5])

type(demo_vectors) # Checking data type.

scipy.sparse._csr.csr_matrix

demo_vectors.shape # Checking shape.

(5, 46)

# we use .todense() here because these vectors are "sparse"

# (only non-zero elements are kept to save space)

print(demo_vectors[0].todense().shape)

print(demo_vectors[0].todense())

(1, 46)

[[ 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 1 0 0 0 0 0 1]]

The preceding code and result show the following.

• There are 46 distinct words (called “tokens”) in the 

selected first five tweets.
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• Obviously, the first tweet (and every other tweet) con-

tains only some of those 46 distinct tokens.

• The vector contains 54 elements because there are 54 

distinct tokens.

• All of the non-zero counts in the vector are the 

tokens that definitely exist in the entry in the 

“CONTENT” column.

Now, let’s create representative number vectors for all of the five 

entries.

combined_df.shape

(1956, 2)

X.shape

(1956,)

# Split in to train and test datasets.

X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size=0.3, random_state=42)

X_train.shape

(1369,)

X_test.shape

(587,)

# We will use count_vectorizer.fit_transform() for X_train 

and X_test.

X_train = count_vectorizer.fit_transform(X_train)

X_test = count_vectorizer.transform(X_test) # We will do onlt 

transform() with X_test.

X_train.shape

(1369, 3458)

X_test.shape

(587, 3458)
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Let’s build a simple machine learning model to predict the “target” 

variable.

# Initialize the Random Forest model

clf = RandomForestClassifier(n_estimators=100, random_state=42)

Next, let’s train the model and evaluate it. The evaluation metric used 

for this is an F1 score.

combined_df.columns

Index(['CONTENT', 'CLASS'], dtype='object')

scores = model_selection.cross_val_score(clf, X_train, y_train, 

cv=3, scoring="f1")

scores

array([0.95067265, 0.95594714, 0.95594714])

The F1 scores look good! You can get better results with other NLP 

techniques that we cover in upcoming chapters.

Next, let’s make the predictions on the test data.

X_train.shape

(1369, 3458)

clf.fit(X_train, y_train)

RandomForestClassifier(random_state=42)

X_test.shape

(587, 3458)

# Make predictions

y_pred = clf.predict(X_test)

y_pred.shape

(587,)

# Construct a dataframe with columns as y_test and y_pred.

test_df = pd.DataFrame()

test_df["y"] = y_test

test_df["y_predict"] = y_pred
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# Display 10 random rows from test_df

random_sample = test_df.sample(n=10)

print(random_sample)

     y  y_predict

454  1          1

475  0          0

252  1          1

298  1          1

108  1          1

316  1          1

101  1          1

230  0          0

437  1          1

428  0          0

We are finishing the solution here, though the predictions also 

look good.

For real-world analysis, the F1 score should be calculated on the test 

data. We are skipping this step.

Note We skipped much of the data cleaning and preprocessing 

in this tutorial, but we managed to get respectable model results. 

Chapter 5 takes up the same tutorial again, but this time with rea-

sonable cleaning of data. it will be interesting to see if there are any 

further improvements in the model results with data cleaning done.

This completes our job for now. Remember, it was an oversimplified 

example created only for the demo.
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1.9  Recap of Key Concepts

This chapter gives a thorough exploration of NLP and its implications 

in today’s industrial landscape. This chapter begins by establishing the 

importance of NLP, followed by a deep dive into fundamental techniques 

utilized today in the NLP domain. Then, our discussion turns to the key 

NLP concepts, including text classification, clustering, and collocation. 

Other essential processes like computing word frequencies, text extraction, 

WSD, and stop word removal are also discussed thereafter. It’s explained 

how NLP applications resolve the confusing meanings of a word in differ-

ent contexts. The chapter also delves into the challenges faced by NLP.

The text then proceeds to explore the real-life applications of NLP 

across industrial domains, including banking and financial services, the 

use of NLP for analyzing financial documents, and automating customer 

interactions through chatbots and personal digital assistants. In the world 

of medicine and healthcare, NLP finds applications in text analysis and 

improving patient care through enhanced data insights. The legal com-

munity uses NLP for document reviews and legal research, text summa-

rization, and to automate other routine business processes. The chapter 

also  highlights recent trends and future directions in NLP, such as transfer 

learning, LLMs, and cross-lingual models. These relatively recent NLP 

applications are powering the development of more sophisticated and 

human-like interactions in NLP-based systems.

Finally, we have included two short business cases on applications of 

NLP in the industry. The first case focuses on medical text analysis. It dem-

onstrates how NLP tools can enhance the extraction and interpretation of 

medical information. The second case examines the application of NLP in 

customer service and business process outsourcing. The chapter ends with 

a fully solved (using Python) business case that demonstrates how to apply 

NLP key concepts in analyzing tweets. The primary purpose of this tutorial 

is to get you started with Python coding in the NLP domain.
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1.10  Conclusion

The overview of NLP presented in this chapter is enough to develop a 

comprehensive understanding of the crucial role the NLP plays in modern 

technology. This chapter helps in developing essential NLP techniques, 

such as text classification, clustering, and WSD. This understanding helps 

lay the groundwork for understanding how NLP processes analyze un-

structured textual data. Discussing the challenges faced in NLP helps you 

understand the complexities involved in developing robust NLP systems 

that can handle linguistic nuances. The varied applications of NLP across 

many industry sectors, including banking and finance, healthcare, and 

legal, focus on its long-term transformative impact. NLP automates routine 

business processes like SEO, improves the search capabilities of modern 

search engines, automates cross-language translations, summarizes text, 

and helps to improve customer interactions. These applications further 

demonstrate the value of NLP in practical business contexts.

Looking forward, the chapter examines recent trends and future 

directions in NLP research (i.e., transfer learning, LLMs, and cross-

lingual  capabilities) to highlight the ongoing advancements in the field. 

Continued research in the NLP domain is critical for addressing evolving 

challenges and enhancing the effectiveness of current NLP systems—on-

going exploration and development in the NLP domain are essential for 

leveraging its full potential.

1.11  Exercises

 1. We solved the tutorial problem in this chapter with 

the classification technique. Try to apply clustering 

algorithms (e.g., k-means) to arrange the text 

samples into clusters based on similarity.
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 a. Can clustering help identify hidden patterns or 

get to any themes within the training dataset?

 b. Make a presentation: Two groups will present 

their classification and clustering results and 

explain their process and any challenges faced.

 c. Discussion points

 a.  How did text classification and clustering 

help in organizing the data?

 b.  What were the main challenges encountered 

during this exercise?

 c.  How can these techniques be applied in 

real-world scenarios?

 2. Read the two short business cases given in this 

chapter and prepare a small presentation to discuss 

the following in your class.

 a. What are the most common NLP techniques 

used across different industries?

 b. How does NLP enhance efficiency and 

effectiveness in each case study?

 c. What are the potential future developments in 

NLP for these industries?

 3. Apply TF–IDF (term frequency–inverse document 

frequency) and apply it to the Python tutorial 

problem. Do you see any improvements in results? 

This technique is covered in the upcoming chapters.
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CHAPTER 2

Collecting and 
Extracting the Data 
for NLP Projects

2.1  Why You Should Learn NLP

There has been an explosion in the availability of data in every domain 

these days. The average amount of daily data generated globally is in the 

hundreds of exabytes. It is an enormous amount of data by any standard, 

with a substantial contribution coming from the United States. This data 

is useful to government and businesses only when it is analyzed properly 

and ultimately results in actionable items. In this data-driven world, 

natural language processing, or NLP, is a recommended tool that supports 

businesses across various domains in analyzing text-based, structured, 

and unstructured data.

The primary sources of text data available to businesses typically 

include interactions through social media, customer feedback, and 

numerous other similar sources. The proper analysis of data supports a 

better understanding of customers by analyzing market trends and finally 

making informed decisions. By implementing NLP-based text analytical 
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techniques, companies can benefit from improved operational efficiency 

and significantly support their strategic decision-making processes.

The effective implementation of NLP in businesses can reduce manual 

work for employees and management and improve overall efficiency. 

The handling of a large volume of text data is completely automatic. 

The outcome of successful NLP implementation is the early detection 

of potential issues followed by the generation of the most appropriate 

action items required for dynamically changing markets. This reduces 

the overall reaction time, saving a significant amount of valuable time for 

management, which can be allocated to other critical business activities.

So, businesses can benefit from the predictive capabilities of NLP to 

forecast customer needs and related market shifts. The companies gain 

a competitive edge through the automatic generation of these valuable 

foresights and the resultant proactive strategy adjustments. So, it can 

be appreciated that NLP is a crucial tool that can generate actionable 

business insights that can help to run efficient operations and improve the 

company’s bottom line in today’s rapidly evolving marketplace.

Provide a case study or business example of how some well-known 

corporation achieved insights by collecting and processing NLP data.

2.2  Where to Find the Data (Text Corpora) 
for NLP Projects

Real-time business projects in NLP typically utilize vast amounts of 

linguistic data. Such data is called text corpora in the NLP community. 

There is another related term: lexical resources. Let’s discuss what it is and 

how it is related to the term text corpora.

Text corpora are large collections of written texts. Many corpora 

are designed to comprise a thoughtful mix of content across different 

categories. Such special corpora are used to study how different 
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specialized societies use language. Lexical resources, on the other hand, 

resemble dictionaries that are helpful in understanding the meanings of 

words found in different text corpora. Combined, text corpora and lexical 

resources provide a comprehensive means to analyze and learn any 

language.

Text corpora contain real-world examples of how humans use 

language in different contexts. Lexical resources offer definitions and 

explanations of words contained in text corpora. Together, the two 

learners can see words in real usage and, at the same time, understand the 

meanings of words, their usage in actual sentences, and the relationships 

between them. It makes the learning of language and its analysis more 

effective. Figure 2-1 illustrates some data processing techniques that were 

used for a sentiment analysis tutorial. We define, discuss, and use each of 

these data processing techniques in the upcoming chapters. Stay tuned!

Figure 2-1. Some common text preprocessing techniques in order

In Figure 2-1, the source text is project-specific text corpora that can be 

used along with the required lexical resources if a project needs it. Next, 

let’s discuss concepts and insert their real-time usage using Python code.
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Our main objective in this chapter is to explain the sources of text data 

that you can use for NLP projects. Let’s start with some familiar examples. 

If you are familiar with the Seaborn library in Python, probably you might 

have come across one or many of the following datasets (not necessarily 

text) available in the Seaborn library.

• Tips

• Iris

• Penguins

• Flights

• Diamonds

• Titanic

• Exercise

• MPG

• Planets

These are the datasets built into Seaborn. They are easy to load and 

use. Let’s consider the Python code in Listing 2-1; as you may appreciate, 

it is not a 100% text dataset. But it was just an example to demonstrate how 

easy it is to upload the data and use it in code ahead. Otherwise, in the 

normal course, you would have loaded a .csv, a .xlxs, or used some other 

method to upload data like web scraping. Similar to this example, NLP- 

specific libraries in Python (like NLTK) also have built-in text data (text 

corpora) for easy use in NLP projects.

Listing 2-1. Easy uploading of internal data from Python Seaborn

import seaborn as sns

tips = sns.load_dataset("tips")

print(tips.head())
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   total_bill   tip     sex smoker  day    time  size

0       16.99  1.01  Female     No  Sun  Dinner     2

1       10.34  1.66    Male     No  Sun  Dinner     3

2       21.01  3.50    Male     No  Sun  Dinner     3

3       23.68  3.31    Male     No  Sun  Dinner     2

Parallel to the Seaborn example, let’s now discuss some built-in text 

corpora from the NLTK Python library. You can readily use this text data in 

your analytics (NLP) projects.

NLTK is a leading NLP platform for building Python programs that 

work with natural languages, such as English, and others. NLTK has built-

in, easy-to-use interfaces to more than 50 corpora and lexical resources. 

Some popular ones include Brown, Gutenberg, Reuters, Inaugural Address 

Corpus, and WordNet 3.0 (English). The following code (Listing 2-2) deals 

with accessing popular text corpora and lexical resources that are built 

into NLTK.

2.2.1  Accessing Some Popular NLTK 
Text Corpora

Listing 2-2. Accessing popular text corpora and lexical resources

# You can skip this code if you have already installed nltk 

Python library

# You can run this. I am not including the output here for 

space saving.

!pip install nltk

# Once you install nltk, you need to download the data.

# You can run this. I am not including the output here for 

space saving.

import nltk

nltk.download('all')
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2.2.2  Accessing Gutenberg Corpus

from nltk.corpus import gutenberg

print(gutenberg.fileids())

['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.

txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 

'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton- 

ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 

'edgeworth-parents.txt', 'melville-moby_dick.txt', 'milton- 

paradise.txt', ….continued]

The code output represents the collection of file IDs (file identifiers) 

that are available in the Gutenberg text corpus of NLTK.

Each file ID represents a text file that contains a literary work included 

in the Gutenberg text corpora.

# This code reads the text of a particular file

hamlet = gutenberg.words('austen-persuasion.txt')

print(hamlet[:50])

['[', 'Persuasion', 'by', 'Jane', 'Austen', '1818', ']', 

'Chapter', '1', 'Sir', 'Walter', 'Elliot', ',', 'of', 

'Kellynch', 'Hall', ',', 'in', 'Somersetshire', ',', 'was', 

'a', 'man', 'who', ',', 'for', 'his', 'own', 'amusement', 

',', 'never', 'took', 'up', 'any', 'book', 'but', 'the', 

'Baronetage', ';', 'there', 'he', 'found', 'occupation', 'for', 

'an', 'idle', 'hour', ',', 'and', 'consolation']

Let's access a few more such text corpora.

2.2.3  Accessing Reuters Corpus

from nltk.corpus import reuters

file_ids = reuters.fileids()[:10]

print(file_ids)
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[....., 'test/14833', 'test/14839', 'test/14840', 'test/14841', 

'test/14842', ....continued]

Categories in the Reuters corpus are not mutually exclusive. We can 

request the multiple topics covered by many documents. We can also 

request multiple documents included in several categories.

# The corpus procedures can accept a single or a multiple file 

IDs at a time.

reuters.categories(['test/14828', 'test/14829'])

['crude', 'grain', 'nat-gas']

file_ids = reuters.fileids(['crude', 'grain'])[:10]

print(file_ids)

['test/14828', 'test/14829', 'test/14832', ...continued]

reuters.words('test/14843')[:5]

['SUMITOMO', 'BANK', 'AIMS', 'AT', 'QUICK']

reuters.words(categories=['crude', 'grain', 'nat-gas'])

['CHINA', 'DAILY', 'SAYS', 'VERMIN', 'EAT', '7', '-', ...]

2.2.4  Accessing Brown Corpus

For accessing Brown Corpus, the following code can be used.

from nltk.corpus import brown

categories = brown.categories()[:5]

print(categories)

[...., 'editorial', 'fiction', ...continued]

sentences = brown.sents(categories=['adventure',  

'belles_lettres'])[:2]

for sentence in sentences:

    print(' '.join(sentence))

Northern liberals are the chief supporters of civil rights and 

of integration .

They have also led the nation in the direction of a welfare state .
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2.2.5  Accessing Gutenberg Corpus

Reuters Corpus has 25,000 free ebooks hosted on its website.

We can run nltk.corpus.gutenberg.fileids() to get the file IDs in 

the corpus.

import nltk

file_ids = gutenberg.fileids()[:3]

print(file_ids)

['austen-emma.txt', .... continued]

# We will take the text — "Emma by Jane Austen"

# We will be then named as "emma_text".

# After that we will find out the number of words in it.

emma_text_sample = nltk.corpus.gutenberg.words('austen-emma.txt')

len(emma_text_sample)

192427

2.2.6  Accessing Web and Chat Text

This corpus includes content from a Firefox discussion forum, the movie 

script for Pirates of the Caribbean, conversations overheard in New York, 

customized commercials, and reviews of wines.

For accessing Web and Chat Text, the following code can be used.

from nltk.corpus import webtext

for fileid in webtext.fileids():

    print(fileid, webtext.raw(fileid)[:30], '...')

firefox.txt Cookie Manager: "Don't allow s ...

grail.txt SCENE 1: [wind] [clop clop clo ...

...

...

pirates.txt PIRATES OF THE CARRIBEAN: DEAD ...

singles.txt 25 SEXY MALE, seeks attrac old ...
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wine.txt Lovely delicate, fragrant Rhon ...

# A corpus of instant messaging chat sessions is also 

available in nltk

# This corpus is organized into 15 files

from nltk.corpus import nps_chat

chatroom = nps_chat.posts('10-19-20s_706posts.xml')

first_10_messages = chatroom[123][:10]

print(first_10_messages)

2.2.7  Accessing NLTK Lexical Resources

The following are some key points.

• NLTK contains multiple lexical resources.

• The most significant one is WordNet.

• WordNet is a huge lexical database of English.

• It groups words into multiple sets of synonyms.

from nltk.corpus import wordnet as wn

synonyms = wn.synsets('book')

print(synonyms)

[Synset('book.n.01'), Synset('book.n.02'), ....

continued.

• The output represents a list of synonym sets (called 

synsets)for the word “book”.

• book represents the word for which the synonym set is 

defined.

• n represents the part of speech ("n" stands for noun in 

this specific example).
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• 01 represents the sense number that differentiates the 

different meanings of the word.

# Get definitions and examples. Printing only the 

first five.

for i, syn in enumerate(synonyms):

    if i >= 5:

        break

    print(syn.definition())

    print(syn.examples())

a written work or composition that has been published 

(printed on pages bound together)

['I am reading a good book on economics']

physical objects consisting of a number of pages bound 

together

['he used a large book as a doorstop']

a compilation of the known facts regarding something 

or someone

["Al Smith used to say, `Let's look at the record'", 

'his name is in all the record books']

a written version of a play or other dramatic 

composition; used in preparing for a performance

[]

a record in which commercial accounts are recorded

['they got a subpoena to examine our books']

• The output gives the definitions and example sentences 

for each sense of the word book.

• It is retrieved from WordNet.
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• It also illustrates the various contexts in which we can 

use the word.

• It also illustrates the various contexts in which we can 

use the word.

>>> Code Snippet 2-2

There are many methods available with NLTK that deal with basic 

corpus functionality. These methods can be found at nltk.corpus.reader 

and www.nltk.org/howto. You are strongly advised to visit these sites to get 

full details.

2.3  Extracting Data from Word Files

The use of Microsoft Word documents is widespread in professional, 

research, and academic environments. Word files often contain valuable 

data in textual formats. Word files can include business reports, literary 

articles, and research papers. This data can be used for multiple NLP 

projects, including information extraction, sentiment analysis, and 

text classification. Processing of Word files can yield rich, structured, 

and unstructured text content, which can be useful in building 

comprehensive NLP models. Such models can be used to automate and 

streamline business workflows to enable quick insights and data-driven 

decision-making.

The information in this format can be combined with data from 

databases, websites, and other text formats (or sources). Data integration 

from various sources can enhance the effectiveness and functionality of 

NLP applications.

Listing 2-3 demonstrates the creation of a sample file. We will use this 

file to extract data. We will use the python-docx library for both writing to 

and reading from the Word file.
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2.3.1  Extracting Data from MS Word Files

Create a sample file.

# Install python-docx if you haven't done it already.

# I am not including the output of this code due to space 

constraints.

!pip install python-docx

The following script creates a sample Word demo document 

containing a title, multiple paragraphs, bullet points, and a table.

from docx import Document

from docx.shared import Pt

# Create a new blank Document.

doc = Document()

# Add a title

doc.add_heading('Sample Document For NLP Analysis', level=1)

# Add a couple of paragraphs.

doc.add_paragraph('This sample Word demo document contains 

multiple paragraphs.')

doc.add_paragraph('Here is another paragraph with more text.')

# Add few bullet points.

doc.add_paragraph('Sample bullet 1', style='List Bullet')

doc.add_paragraph('Sample bullet 2', style='List Bullet')

doc.add_paragraph('Sample bullet 3', style='List Bullet')

# Add a table for demo.

table = doc.add_table(rows=3, cols=2)

table.style = 'Table Grid'
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# Add header row

hdr_cells = table.rows[0].cells

hdr_cells[0].text = 'Header Sample 1'

hdr_cells[1].text = 'Header Sample 2'

# Add a couple of data rows

row_cells = table.rows[1].cells

row_cells[0].text = 'Sample Row 1'

row_cells[1].text = 'Data Point 1'

row_cells = table.rows[2].cells

row_cells[0].text = 'Sample Row 1'

row_cells[1].text = 'Data Point 2'

# Save the newly created document.

doc.save('NLP_demo_sample_file.docx')

The following script loads this Word document.

Then, it extracts and prints various elements of the document, like the 

title, paragraphs, bullet points, and table data.

Listing 2-3. Extracting Data from MS Word Files

from docx import Document

# First load the Word document created above.

doc = Document('NLP_demo_sample_file.docx')

# Extract and print the title

# Assume it to be the opening paragraph.

print(f"Title: {doc.paragraphs[0].text}")

# Extract and print all paragraphs.

print("\nParagraphs:")

for para in doc.paragraphs:

    print(para.text)
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# Extract and print bullet points (assuming they are in a list)

print("\nBullet Points:")

for para in doc.paragraphs:

    if para.style.name == 'List Bullet':

        print(para.text)

# Extract and print table data

print("\nTable Data:")

for table in doc.tables:

    for row in table.rows:

        for cell in row.cells:

            print(cell.text, end=' | ')

        print()

Title: Sample Document For NLP Analysis

Paragraphs:

Sample Document For NLP Analysis

This sample Word demo document contains multiple paragraphs.

Here is another paragraph with more text.

Sample bullet 1

Sample bullet 2

Sample bullet 3

Bullet Points:

Sample bullet 1

Sample bullet 2

Sample bullet 3

Table Data:

Header Sample 1 | Header Sample 2 |

Sample Row 1 | Data Point 1 |

Sample Row 1 | Data Point 2 |
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2.4  Extracting Data from HTML

A vast amount of structured and unstructured text data exists in the form of 

HTML documents. Websites, blogs, and online articles are often in HTML 

format. In such cases, HTML documents become one important primary 

source to extract real-world language usage and patterns. Parsing of HTML 

text can give access to a wealth of diverse textual data that is crucial for 

training NLP models.

This structured nature of HTML documents makes it relatively easier 

to extract appropriate information. The inherent metadata of HTML 

documents, such as tags and attributes (e.g., <title>, <h1>, and <p>), 

provide additional background to the text. HTML documents frequently 

include hyperlinks, which facilitates the exploration across the web.  

Listing 2-4 first creates a sample HTML file for the demo, and then we 

present well-commented code to extract various elements of the sample 

HTML document. Figure 2-2 depicts the data extraction from HTML 

documents.
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Figure 2-2. The process of text extraction from HTML using the 
Beautiful Soup Python library

2.4.1  Extracting Data from HTML Documents

First, let’s create an HTML document for use later for extracting text out of 

it (see Listing 2-4). You should have some basic knowledge of HTML files 

to extract the best out of this section.

Listing 2-4. Extracting Data from HTML Documents using the 

Beautiful Soup library

# Import the BeautifulSoup class from the bs4 library

from bs4 import BeautifulSoup

# The following code reads the HTML file.

# Open 'Sample.html' in read mode.

with open('my_sample.html', 'r') as file:
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     html = file.read()  # Read the content of the file into the 

'html' variable

# Parse the HTML content using BeautifulSoup.

soup = BeautifulSoup(html, 'html.parser')

# Extract the text of the <title> element.

title = soup.title.string

# Extract the text of the <h1> element within the <header>.

main_heading = soup.header.h1.string

# Extract all href attributes from <a> elements within 

the <nav>.

nav_links = [a['href'] for a in soup.nav.find_all('a')]

# Extract the text of the <p> element.

home_section = soup.find(id="home").p.string

# Extract the text of the <p> element within the section with 

id="about".

about_section = soup.find(id="about").p.string

# Extract the text of the <p> element within the section with 

id="contact".

contact_section = soup.find(id="contact").p.string

# Extract the href attribute of the <a> element.

contact_email = soup.find(id="contact").a['href']

# Extract the text of the <p> element within the <footer>.

footer_text = soup.footer.p.string

# Print the title.

print("Title:", title)

# Print the main heading.

print("Main Heading:", main_heading)

# Print navigation links.

print("Navigation Links:", nav_links)

# Print the text of the home section.

print("Home Section:", home_section)
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# Print the contents of the about section.

print("About Section:", about_section)

# Print the contents of the contact section.

print("Contact Section:", contact_section)

# Print the contact email link.

print("Contact Email:", contact_email)

# Print the footer text.

print("Footer Text:", footer_text)

OUTPUT:

Title: Sample HTML File

Main Heading: Main Title

Navigation Links: ['#home', '#about', '#contact']

Home Section: Welcome home. Can we have a coffee?.

About Section: This section writes about an overview of my 

website.

Contact Section: None

Contact Email: mailto:my_name@my_email.com

Footer Text: © I am writing a book with my copyright on it.

You are encouraged to try out this code piece with any other HTML 

document.

# Create an HTML document as said.

html_content = '''

<!DOCTYPE html>

<html lang="en">

<head>

    <meta charset="UTF-8">

     <meta name="viewport" content="width=device-width, initial- 

scale=1.0">

    <title>Sample HTML File</title>

</head>

<body>
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    <header>

        <h1>Main Title</h1>

        <nav>

            <ul>

                <li><a href="#home">Home</a></li>

                <li><a href="#about">About</a></li>

                <li><a href="#contact">Contact</a></li>

            </ul>

        </nav>

    </header>

    <section id="home">

        <h2>Home Section</h2>

        <p>Welcome home. Can we have a coffee?.</p>

    </section>

    <section id="about">

        <h2>About Section</h2>

         <p>This section writes about an overview of my 

website.</p>

    </section>

    <section id="contact">

        <h2>Contact Section</h2>

     <p>You can contact me using my personal email id<a 

href="mailto:my_name@my_email.com">info@example.

com</a>.</p>

    </section>

    <footer>

         <p>&copy; I am writing a book with my copyright 

on it.</p>

    </footer>

</body>

</html>

'''
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# Save the HTML content to a file

with open('my_sample.html', 'w') as file:

    file.write(html_content)

The Beautiful Soup library is used to extract text from this HTML file. It 

is a popular Python library to scrape data from the web.

2.5  Extracting Data from JSON

Like HTML text, JSON files also provide a structured data format for 

storing and exchanging data. JSON (JavaScript Object Notation) files are 

lightweight and easy to parse. It makes them almost a perfect option for 

handling large datasets that are typical in NLP projects. JSON files have a 

nested structure that supports complex data representations with relative 

ease. It allows for the effective organization of text, text annotations, and its 

metadata. All these properties of JSON files make them a preferred option 

when it comes to text preprocessing and analysis.

Let’s create a sample JSON file and then present a well-documented 

code for data extraction.

2.5.1  Extracting Data from JSON Files

First, let’s create JSON for use later for extracting text out of it (see  

Listing 2-5). You should have some basic knowledge of JSON files to extract 

the best out of this section.

Listing 2-5. Extracting Data from JSON Files

import json # import the required Python library to create the 

JASON file.

# Let's create a sample dictionary with some data.

data = {
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    "title": "Sample JSON File",

     "description": "This is a sample JSON file containing 

various elements.",

    "sections": [

        {

            "heading": "Introduction to the World of JASON",

             "content": "This is your introduction to the 

content of a sample JSON file."

        },

        {

            "heading": "Details of JASON",

             "content": "Put your details about the JSON file 

content here."

        },

        {

            "heading": "Conclusion",

            "content": "Put your concluding remarks here."

        }

    ],

    "footer": "Put your footer text here."

}

# Save the sample JSON file,

with open('sample_jason.json', 'w') as file:

    json.dump(data, file, indent=4)

• Now let's extract its content.

import json # Import json.

# Read the JSON file.

with open('sample_jason.json', 'r') as file:   

# Open the JASON file in read mode.
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     data = json.load(file)  # Load the JSON file into the 

'data' variable.

# Extract various elements.

title = data["title"]  # Extract "title".

description = data["description"]  # Extract "description".

sections = data["sections"]  # Extract "sections".

footer = data["footer"]  # Extract "footer".

# Print the extracted text data.

print("Title:", title)  # Print the title.

print("Description:", description)  # Print the description.

for section in sections:  # Loop through the sections list.

    print(f"Section Heading: {section['heading']}")   

# Print the section heading.

    print(f"Section Content: {section['content']}")   

# Print the section content.

print("Footer:", footer)  # Print the footer text.

OUTPUT:

Title: Sample JSON File

Description: This is a sample JSON file containing various 

elements.

Section Heading: Introduction to the World of JASON

Section Content: This is your introduction to the content of a 

sample JSON file.

Section Heading: Details of JASON

Section Content: Put your details about the JSON file 

content here.

Section Heading: Conclusion

Section Content: Put your concluding remarks here.

Footer: Put your footer text here.
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2.6  Extracting Data from PDFs

PDF files are used for distributing and archiving documents quite often. 

They contain rich text data in a consistent format. PDF text frequently 

includes structured text, images, and metadata about the text that can 

be helpful for extracting and later analyzing text content. Almost every 

business domain, including finance, legal, and academia, is dependent on 

files in PDF format. This makes them an important data source for many 

NLP tasks. Figure 2-3 is a simplified schematic of text data extracted from 

PDF files.

Figure 2-3. Text data extraction from PDF files

Chapter 2  ColleCting and extraCting the data for nlp projeCts



76

2.6.1  Extracting Data from JSON Files

First, let’s create a PDF file for use later for extracting text out of it (see 

Listing 2-6). You should have some basic knowledge of PDF files to get the 

best out of this section.

• We will first create a small PDF file for use later in 

extracting text out of it.

• We will use the reportlab library for creating the PDF.

• Later, we will use PyMuPDF (also called fitz) for 

extracting the data.

Listing 2-6. Extracting Data from PDFs

# Install reportlab module if you have not done it already.

# I am not including this code's output here for space reasons.

!pip install reportlab

# Let's create a small PDF demo file as said.

from reportlab.lib.pagesizes import letter

from reportlab.pdfgen import canvas

# Create a demo PDF file,

file_path = "sample_pdf.pdf"

c = canvas.Canvas(file_path, pagesize=letter)

c.drawString(100, 750, "Title: Demo PDF")

c.drawString(100, 735, "This is a demo PDF document.")

c.drawString(100, 720, "Section 1: Introduction")

c.drawString(100, 705, "Put your introductory text here.")

c.drawString(100, 690, "Section 2: Details")

c.drawString(100, 675, "Put the details of the PDF document.")

c.drawString(100, 660, "Section 3: Conclusion")

c.drawString(100, 645, "The conclusion text in this section.")
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c.save()

# To extract the PDF text install fitz if not done already.

# This code's output not included here.

!pip install PyPDF2

import PyPDF2

# Open the PDF file

file_path = "sample_pdf.pdf"

with open(file_path, 'rb') as file:

    reader = PyPDF2.PdfReader(file)

    number_of_pages = len(reader.pages)

    text = ""

    for page_number in range(number_of_pages):

        page = reader.pages[page_number]

        text += page.extract_text()

print("Extracted Text:")

print(text)

Extracted Text:

Title: Demo PDF

This is a demo PDF document.

Section 1: Introduction

Put your introductory text here.

Section 2: Details

Put the details of the PDF document.

Section 3: Conclusion

The conclusion text in this section.
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2.7  Web Scraping

Web scraping enables the large collection of text data from the World 

Wide Web. This data is an important source of text data for training and 

evaluating NLP models. Researchers and practitioners can explore a 

variety of sources and build up diverse datasets that can improve an NLP 

model’s ability to comprehend a variety of languages, contexts, and topics.

The World Wide Web is a source of up-to-date and real-time 

information. This dynamic data can be crucial in creating more accurate 

and relevant NLP applications by reflecting current language usage and 

emergent trends. Listing 2-7 is a simple example of how to scrap data 

from any web URL. Figure 2-4 depicts the entire process of generic web 

scraping.

Figure 2-4. Web scraping
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2.7.1  Web Scraping in NLP Tasks

Listing 2-7. Web Scraping in NLP Tasks

import requests

from bs4 import BeautifulSoup

# URL of the webpage to scrape.

url = 'https://en.wikipedia.org/wiki/Blog'   

# Inserting a random URL.

# Send a GET request to the URL

response = requests.get(url)

# Parse the HTML content of the scrapped page.

soup = BeautifulSoup(response.content, 'html.parser')

# Extract text data.

text_data = ''

for paragraph in soup.find_all('p'):

    text_data += paragraph.get_text() + '\n'

print('Scraped Text Data:')

print(text_data)

OUTPUT: Scraped Text Data (showing only the first paragraph):

A blog (a truncation of "weblog")[1] is an informational 

website consisting of discrete, often informal diary-style 

text entries (posts). Posts are typically displayed in reverse 

chronological order so that the most recent post appears first, 

at the top of the web page. In the 2000s, blogs were often the 

work of a single individual, occasionally of a small group, 

and often covered a single subject or topic. In the 2010s, 

"multi-author blogs" (MABs) emerged, featuring the writing of 
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multiple authors and sometimes professionally edited. MABs 

from newspapers, other media outlets, universities, think 

tanks, advocacy groups, and similar institutions account for an 

increasing quantity of blog traffic. The rise of Twitter and 

other "microblogging" systems helps integrate MABs and single- 

author blogs into the news media. Blog can also be used as a 

verb, meaning to maintain or add content to a blog.

Continued...

2.8  Recap of Key Concepts

NLP is an extremely influential tool used to analyze and comprehend 

large volumes of text data, which is abundantly available in all business 

domains. Text analysis using modern NLP techniques can reveal patterns, 

trends, and insights to make data-driven decisions across various fields, 

including business, legal, and social media.

Finding the right data, both in quality and quantity is one of the most 

challenging tasks in any NLP project. This chapter discussed various text 

data sources (corpora) and demonstrated how to extract meaningful data 

from them. This chapter is just a starting point for any NLP professional. 

Much more detailed and advanced techniques are available to source 

quality data for NLP projects. Internet and standard NLP textbooks are the 

best sources if you need more information on this topic. Web scraping is 

one of the most important processes because many large-scale AI (read 

GenAI) projects use it as their primary source of data for training their 

massive NLP models.

The chapter also discussed other techniques to source the quality data 

and techniques to extract text data from Word files, HTML documents, 

JSON files, and PDFs. We noticed that each format requires different 

method(s) to get the data into a usable format. Mastering these techniques 

is important for every NLP engineer as it’s the starting point of any NLP 

project that they may indulge in.

Chapter 2  ColleCting and extraCting the data for nlp projeCts



81

2.9  Practice Exercises

 1. Access the Gutenberg text Corpus that is distributed 

with NLTK. List all the book titles included in it. 

Practice text extraction and summarization with any 

two of its books.

 2. Create a demo Microsoft Word document 

containing a few paragraphs of text data. Use a 

proper Python library to extract the text and print 

the data contained in it.

 3. Repeat all the steps given in question 2 for an 

HTML file.

 4. Practice data extraction from a real-time JSON file 

and a real web URL.
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CHAPTER 3

NLP Data 
Preprocessing Tasks 
Involving Strings 
and Python Regular 
Expressions

3.1  Why You Should Read This Chapter

First, let’s address our top-level objective. To keep it simple, we are looking 

at a new, hands-on skill in text analytics/natural language processing (NLP). 

This skill is currently in high demand in the global job market, as it’s useful 

to all companies, regardless of their business domain. If we learn only the 

theoretical aspects or conduct a conceptual study, it does not provide us 

with the desired hands-on skills in NLP.

We need tools and techniques to analyze the large volumes of text data 

abundantly available in most establishments. We use NLP-specific and 

other Python libraries as a tool to get much-wanted actionable insights 

https://doi.org/10.1007/979-8-8688-1582-9_3#DOI


84

from volumes of unstructured text data. These Python libraries extensively 

use relevant statistical models for the analysis and evaluation of results. To 

gain hands-on skills, we must familiarize ourselves familiarized with these 

Python libraries and math algorithms. It all boils down to coding with 

Python, which you cannot master unless you get your hands dirty with it. 

So, get ready for some interesting action ahead in this chapter.

3.2  Python for Language Processing

Over the past few years, Python has emerged as a critical language for 

NLP due to its ease of use, wide range of NLP-specific libraries, and large 

user global community. Its syntax is simple to learn and use. All of this, 

combined with the easy readability of Python code, makes it a brilliant 

choice for both novices and experienced programmers. Python can 

efficiently handle large volumes of text data. A large number of instances 

are available where Python is used for NLP tasks such as text classification, 

sentiment analysis, language translation, and more. Python offers enough 

flexibility for integration with a variety of other machine learning models 

to further increase its utility in NLP tasks.

The NLP community uses several Python libraries that have become 

the backbone of NLP tasks due to their robust features and ease of use. 

NLTK (Natural Language Toolkit) is one such Python library that we 

use often. It provides easy-to-use tools for various NLP tasks such as 

tokenization, stemming, and tagging. spaCy is another Python library for 

NLP applications that is known for its speed and efficiency. spaCy finds 

its place in industrial-grade NLP applications. It supports deep learning 

workflows. TextBlob is another library used by beginners because it offers a 

simple API for common NLP tasks.

Other Python libraries, such as Genism, specialize in topic modeling 

and document similarity. Hugging Face is known for its state-of-the-art  

models, such as transformer models, which are extensively used in 
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advanced NLP projects, including GenAI. Many of the terminology used in 

this paragraph may be new to you. We will cover everything either in this 

chapter or at appropriate places in the following chapters.

3.2.1  A Text Analytics Project Life Cycle (Generic 
NLP Pipeline)

In a typical machine learning (ML) project, there are steps such as data 

collection, preprocessing, feature extraction, model training, evaluation, 

and deployment. These steps, when done in series, one after the other, are 

often called an ML pipeline. In ML projects, data is frequently structured 

and consists of a combination of numerical and non-numeric (categorical) 

data. Such data typically requires preprocessing steps like normalization, 

scaling, and transformation. Once the data is ready, the ML model can 

be trained on this processed data. The model results are then evaluated 

using metrics like accuracy or F1 score. The final step is the deployment 

of the model into production for real-world predictions. An ML pipeline 

continuous monitoring and maintenance. Many steps in the pipeline are 

part of a cyclic process. Figure 3-1 depicts a general ML pipeline.
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Figure 3-1. A generic ML project pipeline (steps)

An NLP project pipeline, on the other hand, deals with textual 

data. An NLP pipeline also involves data preprocessing steps, such as 

tokenization, stemming, lemmatization, and stop word removal. We will 

study each of these steps later at appropriate places. After these unique 

data preprocessing steps, text is converted into numerical representations, 

which is similar to ML pipelines. However, the techniques used in 

NLP pipelines are different. They are typically term frequency–inverse 

document frequency, word embeddings, or transformer models. You 

will learn about all of it later in this book. The processed textual data 

(converted to numeric representations) is then consumed by appropriate 

machine learning or deep learning models for training. A well-trained 

model can then accurately perform various NLP tasks, such as text 

classification, sentiment analysis, or named entity recognition.

By now, you might have noticed that many steps are similar in the 

training and deployment of ML and NLP models. The NLP pipeline 
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typically includes several steps for processing text data. Operations and 

maintenance of trained models (in production) in both processes are 

similar and involve many processes done cyclically and repeatedly. We 

recommend that you refer to standard ML operations (MLOps) books for 

more details on the maintenance and operation of models in production 

use. Figure 3-2 depicts a generic NLP pipeline. You can compare 

Figures 3-2 and 3-1 to note similarities and differences in pipelines in 

both cases.

Figure 3-2. A generic NLP project pipeline1 (steps)

Many terms, especially in NLP pipelines, may sound unfamiliar to you 

at this moment. However, this chapter and the subsequent chapters focus 

on explaining these terms and providing hands-on skills to create and 

handle such pipelines.

Next, let’s start with a basic piece of string handling and then proceed 

to relatively advanced topics of this chapter.
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3.2.2  String Handling in Python

A String is a type of data structure in Python language. It characterizes 

a sequence of characters. A string is an immutable data type in Python. 

Once a string is created, it cannot be modified. Python strings are used 

extensively in most text applications. A string is used in storing and 

manipulating text data, which can be in the form of person names, 

local addresses, city names, and other data that can be denoted as text. 

Learning to handle string operations efficiently is basic to any NLP task. 

The following example uses Python code to demonstrate basic string 

manipulation operations. The W3Schools website provides excellent 

resources to learn and practice string operations using Python.

 Creating a String

A string can be created using single or double quotes, as shown in 

Listing 3-1.

Listing 3-1. String Creation in Python

# Creating a demo string using single quotes.

string_single_quotes = 'This is a single quote string for demo'

print(string_single_quotes)

This is a single quote string for demo

# Creating a demo string using double quotes.

string_double_quotes = "This is a single quote string for demo"

print(string_double_quotes)

This is a double quote string for demo

You can create a multiline string (like a paragraph) using triple quotes  

(“‘ ”’). You can try its Python code on your own. It’s simple. If you are 

unable to crack it, refer to the W3Schools website. The following code 

demonstrations show how to create and manipulate text strings. These code 

snippets can be useful in data preprocessing for text analytics (NLP) steps.
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 Accessing Different Characters in a String

A string is represented as an array in Python. Figure 3-3 takes a string, 

“Python”, and indexes its characters with numbers. The index position 

0 represents the first character of the string, P. The last character, n, is 

represented by the index number 5 (Listing 3-2).

Figure 3-3. Representing characters of a string in Python

Listing 3-2. String Indexing in Python

# Accessing characters of a string by index bumbers

string_single_quotes = 'This is a single quote string for demo'

print(string_single_quotes)

This is a single quote string for demo

# Find the length of string 'This is a single quote string 

for demo'.

len(string_single_quotes)

38

# Let's access the first "i" in this string.

string_single_quotes[2]

'i'

# Get the index number of the first "I" in string "'This is a 

single quote string for demo".

string_single_quotes = 'This is a single quote string for demo'

index_of_i = string_single_quotes.index('i')

print("The index of the first 'i' is:", index_of_i)

The index of the first 'i' is: 2
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 More Basic String Operations

Table 3-1 gives a few sample string methods available in Python. For more 

details, please refer to W3Schools website. The code usage of additional 

methods is shown in Listing 3-3.

Table 3-1. Selected Python String Methods

Listing 3-3. More basic string operations

# Slicing

for_slice_string = "String for slicing"

print(for_slice_string[2:5])

rin

# Slicing mid-way till end.

print(for_slice_string[11:])

slicing

# Slicing from beginning till mid-way.

print(for_slice_string[:6])

String

# Altering strings - converting in upper case.

demo_string = "this is a demo string in small letters"

print(demo_string.upper())

THIS IS A DEMO STRING IN SMALL LETTERS

# Converting in lower case

demo_string = "THIS IS A DEMO STRING IN capital LETTERS"
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print(demo_string.lower())

this is a demo string in capital letters

# Removing the extra blank spaces.

demo_string = " Remove blank spaces from this string "

print(demo_string.strip())

Remove blank spaces from this string

# Replacing a substring within a string with an alternative 

substring.

demo_string = "Replace this with THAT"

print(demo_string.replace("this", "THAT"))

Replace THAT with THAT

# Splitting a string at ','.

split_demo = "String, for, split, demo"

print(split_demo.split(",")) # Creates a Python list with 

individual words.

['String', ' for', ' split', ' demo']

# Splitting a string at a specific character.

split_demo = "My house # is 7076 at #22nd street"

print(split_demo.split("#")) # Creates a Python list with 

individual words.

['My house ', ' is 7076 at ', '22nd street']

3.2.3  Introducing Regular Expressions 
for Text Processing

Regular expressions (RegEx) are essential tools in the preprocessing of text 

data. RegEx can extract specific patterns and clean text data in preparing 

data for training NLP models. This section introduces regular expressions 

and demonstrates how they can be used in data preprocessing.
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A regular expression cut by a sequence of characters that formulates 

a search pattern. They can be used to determine if a text string matches 

the specified search pattern. Now, it is time to jump into code examples to 

understand RegEx better.

First, visit www.w3schools.com/python/python_regex.asp to get a list 

of RegEx metacharacters. Without these metacharacters, you will not be 

able to write or understand any RegEx code. Listing 3-4 is about only the 

Python RegEx methods.

Listing 3-4. Python Regular Expressions

Python RegEx examples.

# A list of all matches.

import re # the RegEx library.

# Below is a demo sentence.

demo_txt = "The referee had to match the players' skills to 

ensure a fair match."

# Find all occurrences of the word "match".

list = re.findall("match", demo_txt)

print(list)

['match', 'match']

# Split the string at each black space.

demo_txt = "The referee had to match the players' skills to 

ensure a fair match."

list = re.split("\s", demo_txt)

print(list)

['The', 'referee', 'had', 'to', 'match', 'the', "players'", 

'skills', 'to', 'ensure', 'a', 'fair', 'match.']

# Let's now print the part of the string with a match.
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demo_txt = "Last week I visited Spain"

# Visit W3school to find meaning of metacharacter "\bS\w+"

match = re.search(r"\bS\w+", demo_txt)

print(match.group())

Spain

# The search functions. Search for the first white-space.

demo_txt = "I visited Europe and the US last year."

result_index = re.search("\s", demo_txt)

print("The location of first white-space character is at 

index:", result_index.start())

The location of first white-space character is at index: 1

# Replace each blank space character with "X".

demo_txt = "I visited Europe and the US last year."

result_string = re.sub("\s", "X", demo_txt)

print(result_string)

IXvisitedXEuropeXandXtheXUSXlastXyear.

# Replace the first three blanks with "X"

demo_txt = "I visited Europe and the US last year. It was 

freezing cold."

result_string = re.sub("\s", "X", demo_txt, 3)

print(result_string)

IXvisitedXEuropeXand the US last year. It was freezing cold.

# Return a Matching Object.

demo_txt = "The rained in Mumbai last night. Mumbai is biggest 

metro of India."

result_string = re.search("Mumbai", demo_txt)

print(result_string)

<re.Match object; span=(14, 20), match='Mumbai'>

# Find the start-and end-position of the first match.
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import re

demo_txt = "The rained in entire last night. Spain is cold 

these days."

result_string = re.search(r"\bS\w+", demo_txt)

if result_string:

    print(result_string.span())

else:

    print("No match found.")

(33, 38)

# Find the matching part of the string.

demo_txt = "The rained in entire Spain last night. Spain 

is cold."

result_string= re.search(r"\bS\w+", demo_txt)\

print(result_string.group())

Spain

3.3  Real-life (NLP) Applications of RegEx

RegEx is handy when it comes to pattern matching and string 

manipulation in text analytics (or NLP) tasks. Python RegEx offers a 

quick method for matching, searching, and manipulating text based on 

predefined patterns. The following are selected real-life applications of 

Python RegEx. These code snippets can be used in data preprocessing and 

data cleaning steps to prepare data for the training of NLP models.
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3.3.1  Validate Formatting of Phone Numbers

You can validate a list of phone numbers using RegEx to confirm they are 

in a precise format. For example, ‘234-567-9873’. Listing 3-5 is the Python 

code for this application.

Listing 3-5. Validating Phone Numbers with Python RegEx

import re

# Let's create a sample list of phone numbers.

# The valid phone number format is "123-456-789". Rest are 

invalid.

phone_numbers_lst = [

    "567-789-7870",

    "986-666-3220",

    "1234567890",

    "135-42-7786",

    "xyz-abc-cdef"

]

# RegEx pattern for validating the list of phone numbers

# Refer W3school website on how to form a regular expression 

pattern.

re_for_phone_pattern = r"^\d{3}-\d{3}-\d{4}$"

# Validate list phone numbers using this RegEx pattern.

for number in phone_numbers_lst:

    if re.match(re_for_phone_pattern, number):

        print(f"'{number}' is a valid phone number format.")

    else:

        print(f"'{number}' is invalid phone number format.")

'567-789-7870' is a valid phone number format.

'986-666-3220' is a valid phone number format.
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'1234567890' is invalid phone number format.

'135-42-7786' is invalid phone number format.

'xyz-abc-cdef' is invalid phone number format.

3.3.2  Search and Replace

Any person who has used a spreadsheet or word processing application 

is familiar with the term “Search and Replace”. Many other applications 

also make use of this functionality. This is handy when you need to make 

consistent changes across documents or codebases. Python RegEx module 

provides us with advanced search and replace functionality that enables 

accurate and flexible data manipulation (see Listing 3-6).

Listing 3-6. Python RegEx for Search and Replace

import re

# Let's first create a sample sentence.

demo_text = "The rain, rain, rain fell all day."

# We will replace the word "rain" with "water".

# REgEx pattern to search for "rain"

pattern = r"rain"

# Replace "rain" with "water"

replaced_demo_text = re.sub(pattern, "water", demo_text)

print("Original text:", demo_text)

print("Replaced text:", replaced_demo_text)

Original text: The rain, rain, rain fell all day.

Replaced text: The water, water, water fell all day.
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3.3.3  Date Formatting

NLP professionals are often required to change the formatting of dates 

from one format to another. Due to the availability of various date formats, 

this operation can be challenging. The following code shows the possible 

simplification in this process by using Python’s RegEx. In Listing 3-7, the 

application of regular expression is used to change the formats of dates 

from “MM-DD-YYYY” to “YYYY-MM-DD”.

Listing 3-7. Python RegEx for Reformatting Dates

import re

# Sample date format in MM-DD-YYYY.

original_date_str = "10-08-2024"

# Python RegEx pattern to match tyhe original format - 

MM-DD-YYYY.

original_pattern = r"(\d{2})-(\d{2})-(\d{4})"

# Let's reformat the sample date to another one - YYYY-MM-DD.

newly_formatted_date = re.sub(original_pattern, r"\3-\1-\2", 

original_date_str)

print(newly_formatted_date)

2024-10-08

3.3.4  Word Counting

Word counting is finding the frequency of every word in a given text sentence 

or paragraph. Word count is useful for analyzing the content. The interest 

here is in finding the most frequently used words. Python RegEx module can 

be utilized for this purpose. Listing 3-8 demonstrates how to do it.

Chapter 3  NLp Data preprOCeSSING taSKS INVOLVING StrINGS aND pYthON  

      reGULar eXpreSSIONS



98

Listing 3-8. Python RegEx for Finding Word Frequencies

import re

from collections import Counter

# We will take the sample test as the first paragraph of this 

section.

Sample_text_para = """

                     Word counting is finding the frequency 

of every word in a given text sentence 

or paragraph. Word count is useful for 

analyzing of the content. The interest 

here is in finding the most frequently used 

words. Python RegEx module can be utilized 

for this purpose. Below we will demonstrate 

how to do it.

                    """

# RegEx pattern for matching words.

words = re.findall(r'\b\w+\b', Sample_text_para.lower())

# Find the frequency.

word_count = Counter(words)

print(word_count)

Counter({'the': 4, 'word': 3, 'is': 3, 'finding': 2, 'of': 2, 

'in': 2, 'for': 2, 'counting': 1, 'frequency': 1, 'every': 

1, 'a': 1, 'given': 1, 'text': 1, 'sentence': 1, 'or': 

1, 'paragraph': 1, 'count': 1, 'useful': 1, 'analyzing': 

1, 'content': 1, 'interest': 1, 'here': 1, 'most': 1, 

'frequently': 1, 'used': 1, 'words': 1, 'python': 1, 'regex': 

1, 'module': 1, 'can': 1, 'be': 1, 'utilized': 1, 'this': 1, 

'purpose': 1, 'below': 1, 'we': 1, 'will': 1, 'demonstrate': 1, 

'how': 1, 'to': 1, 'do': 1, 'it': 1})
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3.3.5  Log File Analysis

Log file analysis is the extraction of specific information from large log 

files that are generated by servers and many other machines. Log files 

generally contain an exhaustive record of the activities performed by 

specific machines. We can use Python RegEx to parse log files and identify 

patterns, extract specific data, or filter out error records. RegEx can be 

used to match (and filter out) timestamps, error codes, or specific log 

entries. Extracting specific information from large log files can be helpful 

in statistical analysis. Log file analysis is often used to filter out ERROR 

records. Listing 3-9 demonstrates it with the Python RegEx module.

Listing 3-9. Python RegEx for Analysis of Log Files

import re

# We will first prepare an imaginary log file.

# And then filter out only the ERROR messages.

sample_log_data = """

2023-04-10 12:14:22 ERROR Could not connect to the server

2023-04-10 12:15:12 INFO User login timeout

2023-04-10 12:16:35 WARNING Out of memory

2023-04-10 12:17:34 ERROR Server module failure

"""

# RegEx pattern to match ERROR entries.

re_pattern_for_error = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2} 

ERROR .*"

# Detect only the ERROR entries from the log file.

error_messages = re.findall(re_pattern_for_error, sample_

log_data)

# Print each ERROR message one below the other.
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for error in error_messages:

    print(error)

2023-04-10 12:14:22 ERROR Could not connect to the server

2023-04-10 12:17:34 ERROR Server module failure

3.3.6  String Cleaning

Text preprocessing tasks frequently need to clean the text strings. For 

example, a Tweet has a text string like Hello@John!, and our data cleaning 

task requires us to remove all special characters to make it usable for text 

analytics. We can deploy Python RegEx here, too. Using RegEx, you can 

remove special characters, white spaces, or URLs to clean up a text string 

for further analysis. Listing 3-10 is a demo.

Listing 3-10. Python RegEx for Cleaning Text Strings

import re

# Below is a sample text string, we found in a Tweet.

sample_text = "Hi!!! I am John. Welcome @my house. You can get 

more info @ www.sk.com"

# ReEx to remove special characters and URLs from the 

sample_text.

# Remove special characters

usable_text = re.sub(r"[!@#%&*:]", "", sample_text)  usable_

text = re.sub(r"http\S+|www\.\S+", "", usable_text)  # Clean 

of URLs.

print(usable_text)

Hi I am John. Welcome my house. You can get more info

Chapter 3 NLp Data preprOCeSSING taSKS INVOLVING StrINGS aND pYthON  

      reGULar eXpreSSIONS



101

3.3.7  Tokenization

Tokenization is a central step in any NLP task. In this process, a larger 

text chunk is broken down into words or sentences to keep text analysis 

simple. Tokenization is principally a text preprocessing step that allows 

for preprocessing tasks like word frequency analysis, sentiment analysis, 

and language modeling. Python RegEx can be utilized for tokenization 

by first defining patterns to split the text chunks into smaller units 

of tokens based on mostly blank spaces, punctuation, or some other 

delimiters. Listing 3-11 is a code demonstration of a simpler method and a 

professional method.

Listing 3-11. Python RegEx for Tokenization of Larger 

Chunks of Text

•    Simpler way to tokenize.

     import re # simpler way to tokenize.

     # Below is a sample text chunk randomly cgosen for 

tokenization.

     sample_text = """ Tokenization is a central step in any 

NLP task.

     In this process, larger text chunk is broken down 

into words

    or sentences, to keep text analysis simple.

    """

     # RegEx pattern to tokenize the text chunks into tokens 

(words).,

    tokens = re.findall(r'\b\w+\b', sample_text)

    print(tokens)
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     ['Tokenization', 'is', 'a', 'central', 'step', 'in', 'any', 

'NLP', 'task', 'In', 'this', 'process', 'larger', 'text', 

'chunk', 'is', 'broken', 'down', 'into', 'words', 'or', 

'sentences', 'to', 'keep', 'text', 'analysis', 'simple']

•    Below is more professional method to tokenize.

     import re # more professional method to tokenize.

     def text_tokenizer(text_to_tokenize): # wtrite a function 

to toknize.

        """

         This function tokenizes any input text chunk into words 

by splitting on non-word characters.

        Args:

            text (str): The input string to tokenize.

        Returns:

             list: A list of tokens (words) extracted from the 

input text.

        """

        # RegEx pattern to split the text

        tokens = re.split(r'\W+', text_to_tokenize)

          Filter out any empty tokens that may result from 

the split.

        tokens = [token for token in tokens if token]

        return tokens

    # Sample text for tokenization

     sample_text = """ Tokenization is a central step in any 

NLP task.

     In this process, larger text chunk is broken down into words

    or sentences, to keep text analysis simple.

    """
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    # Tokenize the sample text.

    tokens = text_tokenizer(sample_text)

    # Output tokens are in the form of a list.

    print(tokens)

     ['Tokenization', 'is', 'a', 'central', 'step', 'in', 'any', 

'NLP', 'task', 'In', 'this', 'process', 'larger', 'text', 

'chunk', 'is', 'broken', 'down', 'into', 'words', 'or', 

'sentences', 'to', 'keep', 'text', 'analysis', 'simple']

3.3.8  Text Normalization

Formally speaking, text normalization refers to the conversion of larger text 

chunks into standard, consistent formats to minimize variations that can 

complicate text analysis tasks. Text normalization includes data cleaning 

tasks like converting text to lowercase, removing punctuation, expanding 

contractions, and replacing special characters. Text normalization ensures 

that different forms of a word or phrase are treated the same way. Text 

normalization cleans the text data into consistent forms to ensure better 

accuracy is attained when such cleaned data is used to train NLP models. 

Listing 3-12 is the text demo.

Listing 3-12. Python RegEx for Text Normalization

import re

def text_normalizer(text_to_normalize):

    """

     This function normalizes any input text by converting to 

lowercase,

     removing punctuation, and replacing special characters 

with spaces.

    Args:
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        text (str): The input string to normalize.

    Returns:

        str: The normalized text.

    """

    # First convert the input text to lowercase.

    text_to_normalize = text_to_normalize.lower()

     # Replace special characters and punctuation with a 

white space.

     text_to_normalize = re.sub(r'[^\w\s]', ' ', text_to_

normalize)

    # Remove any extra spaces.

     text_to_normalize = re.sub(r'\s+', ' ', text_to_

normalize).strip()

    return text_to_normalize

# Sample input text.

sample_text = "Hi!!! This is Stella here. I'll come this 

Evening with you to market!!!!!!"

# Normalize the text

normalized_text = text_normalizer(sample_text)

# Print the output.

print(normalized_text)

hi this is stella here i ll come this evening with you 

to market

This section revealed how RegEx is useful. The RegEx code demos 

can help you see countless applications of RegEx in real-life situations. 

However, in every application of RegEx that we demonstrated so far, we did 

not discuss how a specific RegEx pattern can be cut for any explicit task. 

We suggest that you refer to the W3school website. There are also many 

good articles available on the Internet that can teach you.
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3.4 Chapter Recap

This chapter began by understanding the significance of Python as a 

versatile tool for NLP tasks. Python is widely adopted in the industry 

due to its powerful libraries (whether for NLP or otherwise) and strong 

community support worldwide. We then investigated the generic NLP 

pipeline and examined various stages of a generic text analytics project. 

Then, we turned our focus on string handling in Python. While studying 

various string handling methods, you learned how to effectively manipulate 

and analyze text strings. We also studied regular expressions, focusing on 

their applications in data preprocessing tasks. From data cleaning to text 

extraction, the Python RegEx module has proved to be an irreplaceable 

asset in the text processing toolkit. This solid foundation in Python for NLP 

tasks will serve as a stepping stone for more advanced topics in language 

processing and text analytics. Throughout the following chapters, our goal is 

to provide the right balance of concepts and hands-on skills. Stay tuned!

3.5  Exercises

 1. This chapter focuses on hands-on skills, primarily 

with regular expressions (RegEx). Write the 

Python RegEx programs for the following NLP data 

preprocessing tasks.

• Email address validation

• URL parsing

• Extracting dates from text

• HTML tag removal

• Password strength checking
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• Validating credit card numbers

• Extracting sentences from paragraphs

• Detecting duplicate words

 2. From exercise question 1 and the examples given in 

this chapter, you may have discovered that sometimes, 

forming the right RegEx pattern for specific tasks can 

be tedious. In such cases, it’s better to find alternate 

ways of doing the tasks. Search the Internet and find 

out if you can get alternate but easier ways of doing 

the tasks discussed in this chapter. Focus on real-life 

applications of the Python RegEx module.
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CHAPTER 4

NLP Data 
Preprocessing Tasks 
with NLTK

4.1  Why You Should Read This Chapter

Natural Language Toolkit (NLTK) is one of the most popular and useful 

natural language processing (NLP) platforms, useful for developing Python 

programs that work with natural languages (such as English, German, 

and others). NLTK offers user-friendly interfaces to more than 50 text 

corpora and other lexical resources. NLTK resources include WordNet, 

along with a collection of text processing libraries that can be useful for 

text classification, tokenization, stemming, tagging, parsing, and semantic 

reasoning. Additionally, there is an active discussion forum that can be 

very supportive and offer solutions to commonly occurring technical 

problems.

NLTK is free and open source. It is actively used by linguists, industry 

engineers, and researchers, university students, educators alike. 

Widespread online forums, tutorials, and example codes are available for 

supporting NLTK. It provides full support for the English language, but 

support for other languages like Spanish or French is not extensive.

https://doi.org/10.1007/979-8-8688-1582-9_4#DOI
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Professionals often use NLTK with other useful Python libraries like 

scikit-learn (open source) and TensorFlow (open source from Google). It 

allows for even more sophisticated language modeling using deep learning 

and other machine learning algorithms. The chapter presents some 

applications of NLTK (using Python code) in data preprocessing and other 

NLP tasks. In each case, we keep a balance between the explanations and 

the required Python code.

The chapter also features a few simple NLP tasks that we can perform 

using NLTK.

4.2  NLP Data Preprocessing Tasks

NLP data preprocessing tasks include the steps necessary in preparing 

raw text data for NLP model training. Preprocessing tasks include data 

cleaning, structuring, and transforming the raw text to ensure consistency 

and maintain the required data quality. This step makes raw text data 

ready for model training and other more intricate NLP operations. 

Common preprocessing tasks include tokenization, removal of stop 

words, stemming, and lemmatization. Tokenization breaks down larger 

text chunks into individual words or sentences. Another operation, the 

removal of stop words, filters out common but irrelevant words. Stemming 

and lemmatization reduce words to their base or root forms. It ensures 

that multiple variations of the same word are treated uniformly during text 

analysis.

Let’s start with tokenization using NLTK. As usual, we include a 

working code demo for all the processes.

4.2.1  Tokenization Using NLTK

Now that you have learned a bit about tokenization with RegEx, you will 

notice that it is much easier to tokenize with NLTK.
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Tokenization is a vital process in NLP data preprocessing. It involves 

breaking down larger text data into minor units of words or sentences. This 

operation further enables the identification of meaningful elements within 

the larger text chunks.

Tokenization can be at either the individual word level (word 

tokenization) or at the sentence level (sentence tokenization). 

Tokenization operations help in the proper structuring of unstructured raw 

text data to make it easier to process downstream NLP tasks. Listing 4-1 

shows how to perform tokenization with just a few steps of code in NLTK.

Listing 4-1. Tokenization Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

import nltk

from nltk.tokenize import word_tokenize, sent_tokenize

# Create sample text.

sample_text = """

We had already discussed about tokenization in RegEx sections.

Tokenization is a vital process in NLP data pre-processing.

It involves breaking down larger text data into minor units of 

words or sentences.

This operation further enables the identification of meaningful 

elements within the larger text chunks.

"""

# Perform word level tokenization first.

words = word_tokenize(sample_text)

print("Word Tokens:", words)

# Then perform sentence level tokenization.

sentences = sent_tokenize(sample_text)
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print("\nSentence Tokens:", sentences)

OUTPUT:

Word Tokens: ['We', 'had', 'already', 'discussed', 'about', 

'tokenization', 'in', 'RegEx', 'sections', '.', 'Tokenization', 

'is', 'a', 'vital', 'process', 'in', 'NLP', 'data', 'pre- 

processing', '.', 'It', 'involves', 'breaking', 'down', 

'larger', 'text', 'data', 'into', 'minor', 'units', 'of', 

'words', 'or', 'sentences', '.', 'This', 'operation', 

'further', 'enables', 'the', 'identification', 'of', 

'meaningful', 'elements', 'within', 'the', 'larger', 'text', 

'chunks', '.']

Sentence Tokens: ['\nWe had already discussed about 

tokenization in RegEx sections.', 'Tokenization is a vital 

process in NLP data pre-processing.', 'It involves breaking 

down larger text data into minor units of words or sentences.', 

'This operation further enables the identification of 

meaningful elements within the larger text chunks.']

4.2.2  Stop Word Removal

Stop word removal involves filtering out commonly used words (in 

sentences) that are often irrelevant to NLP tasks. These words are known 

as stop words. Examples of English stop words include “is,” “the,” “and,” 

which typically do not contribute much to the meaning of sentences. 

By removing these words, the text analysis process can focus on more 

meaningful words. Removing stop words improves the efficiency 

and effectiveness of text analytics tasks such as text classification and 

sentiment analysis.

NLTK includes a list of English stop words. You can get them at 

https://gist.github.com/sebleier/554280. Stop words can vary 

depending on the language and context. The list of stop words provided 

Chapter 4  NLp Data preproCessiNg tasks with NLtk

https://gist.github.com/sebleier/554280


111

in earlier sentences is a standard set of stop words for English. Stop word 

removal provides a clear advantage by reducing the dimensionality of 

text data and allows the analyst to focus on the most relevant words for 

analysis. Listing 4-2 is a code demo of stop word removal using NLTK.

Listing 4-2. Stop Word Removal Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

# Important required libaries.

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

# Ensure required resources.

nltk.download('stopwords')

nltk.download('punkt')

def stopwords_remover(text, language='english'):

    """

    This functions filters out stop words from the input text.

    Args:

        text (str): The Sample text to remove stop words.

        language (str): The target language.

    Returns:

        list: A list of words with stop words removed.

    """

    # Tokenize the text.

    words = word_tokenize(text)

    # Retrieve the list of stop words for English.

    stop_words = set(stopwords.words(language))
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    # Remove stop words.

     ouput_text = [word for word in words if word.lower() not in 

stop_words]

    return ouput_text

[nltk_data] Downloading package stopwords to C:\Users\

Shailendra

[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package stopwords is already up-to-date!

[nltk_data] Downloading package punkt to C:\Users\Shailendra

[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package punkt is already up-to-date!

# We will keep the sample text same as the tokenization 

example.

# This is to show the difference between tokenization and stop 

words removal.

sample_text = """

We had already discussed about tokenization in RegEx sections.

Tokenization is a vital process in NLP data pre-processing.

It involves breaking down larger text data into minor units of 

words or sentences.

This operation further enables the identification of meaningful 

elements within the larger text chunks.

"""

# Filter out stop words.

filtered_words = stopwords_remover(sample_text)

# Output the results.

print("Filtered Words:", filtered_words)

OUTPUT:
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Filtered Words: ['already', 'discussed', 'tokenization', 

'RegEx', 'sections', '.', 'Tokenization', 'vital', 'process', 

'NLP', 'data', 'pre-processing', '.', 'involves', 'breaking', 

'larger', 'text', 'data', 'minor', 'units', 'words', 

'sentences', '.', 'operation', 'enables', 'identification', 

'meaningful', 'elements', 'within', 'larger', 'text', 

'chunks', '.']

Note Compare the code output for tokenization and stop word 

removal. Do you find any difference? Discuss it in the class.

4.2.3  Stemming Using NLTK

Stemming might be a new word for most of you if you have not studied 

NLP before. This is a data preprocessing technique, and it comes under 

the broader category of normalization. This operation reduces words (as 

they appear in sentences of text corpora) to their base or root form. The 

transformed words are known as the stem. Stemming involves stripping 

suffixes like “ing,” “ed,” and “ly” to transform words into their base form. 

Stemming ensures that variations of a word are treated as the same during 

text analysis. Stemming also reduces the dimensionality of the data, like 

the operation of stop word removal (see Figure 4-1).
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Figure 4-1. Stemming process with NLTK

Stemming can sometimes produce non-dictionary words, as 

demonstrated in the following examples.

• “Caring” can be stemmed to “car” in place of its root 

word, “care”.

• “Happiness” can be stemmed to “happi” in place of its 

root word, “happy”.

In spite of this approximation, stemming still remains a powerful tool 

for cultivating the efficiency and usefulness of text processing. You can 

access more examples directly from IBM’s website at www.ibm.com/think/

topics/stemming.

Listing 4-3 demonstrates stemming operation with NLTK. This 

function can be directly utilized in your NLP projects as one of the primary 

data preprocessing steps.

Listing 4-3. Stemming Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

# Import required libraries.

import nltk

Chapter 4  NLp Data preproCessiNg tasks with NLtk

http://www.ibm.com/think/topics/stemming
http://www.ibm.com/think/topics/stemming


115

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize

# Import other necessary resources.

nltk.download('punkt')

def stemmer(text):

    """

    Stems the input words using the Porter stemmer.

    Args:

        text (str): The original text to be stemmed.

    Returns:

        list: A list of stemmed words.

    """

    # Initialize the Porter Stemmer.

    stemmer = PorterStemmer()

    # Tokenize the input text.

    words = word_tokenize(text)

    # Apply stemmer to every word in the input text.

    stemmed_words = [stemmer.stem(word) for word in words]

    return stemmed_words

[nltk_data] Downloading package punkt to C:\Users\Shailendra

[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package punkt is already up-to-date!

# Create a random sample sentence for stemming.

sample_text = "NLP is language Processing that includes 

analyzing, processing, and producing sentences."

# Apply the stemmer function, we just created.

stemmed_words = stemmer(sample_text)
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# Print the resulting stemmed words.

print("Stemmed Words:", stemmed_words)

OUTPUT:

Stemmed Words: ['nlp', 'is', 'languag', 'process', 'that', 

'includ', 'analyz', ',', 'process', ',', 'and', 'produc', 

'sentenc', '.']

Note Compare the output of the stemmed word with the original 

input sample text. Do you find a few non-dictionary words in the 

output? Discuss it in the class. search the internet to find if there are 

any better ways to reduce input words into their base forms.

4.2.4  Lemmatization

Lemmatization is an NLP data preprocessing technique that reduces 

input words to their base or root form. The base form of lemmatization 

is known as a lemma. Lemmatization is similar to stemming in a way. 

Lemmatization is crucial in NLP data preprocessing tasks like text 

normalization, where preserving the semantic meaning of original input 

words is critical (see Figure 4-2).

Figure 4-2. Lemmatization using NLTK
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While stemming simply truncates input words to remove only suffixes, 

lemmatization also considers the context and morphological analysis of 

words. Let’s try to understand it better with an example. The input words 

“running,” “ran,” and “runs” can all be reduced to their lemma, “run.” 

Consider the following paired text bullet sets.

• Original: running, stemmed: run

• Original: ran, stemmed: ran

• Original: runs, stemmed: run

and

• Original: running, Lemmatized: run

• Original: ran, Lemmatized: run

• Original: runs, Lemmatized: run

Let’s repeat it with different examples.

• Original: easily, Stemmed: easili

• Original: fairly, Stemmed: fairli

• Original: happiness, Stemmed: happi

and

• Original: easily, Lemmatized: easily

• Original: fairly, Lemmatized: fairly

• Original: happiness, Lemmatized: happiness

With this example, you now have a clear picture of the difference 

between “stemming” and “lemmatization”.

Now it’s time to jump straight to our code demo on lemmatization 

works. The following code uses POS (part of speech), which means the role 

any word plays in a sentence. The role of a word (in a given sentence) may 

be a noun, verb, adjective, or adverb.
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Considering POS during lemmatization is critical as it can have 

different base forms depending on their role/POS in a sentence. Let’s take 

an example; “running” as a verb, becomes “run,” but as a noun, it stays 

“running.” In another example, if we use “better” as an adjective, it stays 

“better,” but when used as a verb, it becomes “improve.” Using POS, a 

lemmatizer can choose the correct base form. It preserves the meaning of 

the original input word. Listing 4-4 is a code demo for this operation. You 

can utilize this code directly in your NLP data preprocessing tasks.

Listing 4-4. Lemmatization Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

import nltk # Import necessary libraries.

from nltk.stem import WordNetLemmatizer

from nltk.corpus import wordnet

# Import other required resources.

nltk.download('wordnet')

nltk.download('omw-1.4')

nltk.download('averaged_perceptron_tagger')

# Initialize the WordNet Lemmatizer.

lemmatizer = WordNetLemmatizer()

# Let's write a function to get part of speech for accurate 

lemmatization

def get_wordnet_pos(word):

    tag = nltk.pos_tag([word])[0][1][0].upper()

    tag_dict = {"J": wordnet.ADJ,

                "N": wordnet.NOUN,

                "V": wordnet.VERB,

                "R": wordnet.ADV}

    return tag_dict.get(tag, wordnet.NOUN)
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# The output of this code is not included here being 

irrelavent.

# Sample imput words.

words = ["easily", "fairly", "happiness"]

# Lemmatization with considering part of speech (POS).

lemmatized_words = [lemmatizer.lemmatize(word, get_wordnet_

pos(word)) for word in words]

# Print the output.

for word, lemma in zip(words, lemmatized_words):

    print(f"Original: {word}, Lemmatized: {lemma}")

OUTPUT:

Original: easily, Lemmatized: easily

Original: fairly, Lemmatized: fairly

Original: happiness, Lemmatized: happiness

4.2.5  Sentence Segmentation

Sentence segmentation involves breaking an input text corpus into its 

component sentences. This process is an NLP data preprocessing task. It 

is useful where understanding the structure of the text is necessary. After 

the sentence segmentation process, the input text can be processed in the 

form of individual sentences. This operation helps in effective analysis 

(understanding meaning and context) of text corpora at the sentence level.

In sentence segmentation, sentence boundaries are determined by 

punctuation marks such as periods, exclamation points, and questions. 

However, special cases like abbreviations, decimal numbers, and names 

with punctuation marks do not indicate the end of a sentence.

The Python NLTK library can deal with sentence segmentation using 

its sent_tokenize function. The sent_tokenize function uses pre-trained 

NLP models to split text into sentences. It can deal with complicated 
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sentence structures and edge cases. Listing 4-5 is a code demo for 

sentence segmentation. You can utilize this code directly in your NLP data 

preprocessing tasks.

Listing 4-5. Sentence Segmentation Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

import nltk

from nltk.tokenize import sent_tokenize

nltk.download('punkt')

def sentences_segmenter(text):

    """

    Segments a given input text corpora into sentences.

    Parameters:

    text (str): The input text corpora to be segmented.

    Returns:

    list: A list of sentences extracted from the input text.

    """

    return sent_tokenize(text)

# The output of this code is not included here being 

irrelavent.

# Example text

text = """

Sentence segmentation is involves breaking an input text corpus 

into its component sentences.

This process is NLP data preprocessing task. It us useful where

understanding the structure of the text is necessary. After 

sentence segmentation process, the input text can
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be processed in the form of individual sentences. This 

operation helps in effective analysis (understanding meaning

and context) of text corpora at the sentence level.

"""

# Segment the text corpus.

sentences = sentences_segmenter(text)

# Print output.

for i, sentence in enumerate(sentences, 1):

    print(f"Sentence {i}: {sentence}")

OUTPUT:

Sentence 1: Sentence segmentation is involves breaking an input 

text corpus into its component sentences.

Sentence 2: This process is NLP data pre-processing task.

Sentence 3: It us useful where understanding the

structure of the text is necessary.

Sentence 4: After sentence segmentation process, the input

text can be processed in the form of individual sentences.

Sentence 5: This operation helps in effective analysis

(understanding meaning and context) of text corpora at the 

sentence level.

4.2.6  Word Frequency Distribution

Word frequency distribution (WFD) comprises counting how often each 

word appears in an input text corpus. WFD is useful in understanding the 

importance of different words. It also helps in finding trends within the 

text. By exploring WFD, analysts can gain insights into the content and 

themes of the text.
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In practical applications, WFDs are used in various NLP preprocessing 

tasks like keyword extraction, topic modeling, and sentiment analysis. We 

talk about these newly introduced terms later in this book. By knowing 

WFDs in an input text corpus, we can highlight important concepts or 

terms contained in that input text document. Comparing word frequencies 

across different input texts reveals the differences in their vocabulary and 

style (see Figure 4-3).

Figure 4-3. WFD using nltk

We can use the NLTK FreqDist class to create a frequency distribution 

for a list of words and analyze the most commonly occurring words 

in a given text corpus. This functionality is predominantly needed 

for processing large text corpora and extracting meaningful patterns 

contained in them. Listing 4-6 is a code demo for WFD. You can utilize this 

code directly in your NLP data preprocessing tasks.

Listing 4-6. WFD Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

import nltk

from nltk.probability import FreqDist

from nltk.tokenize import word_tokenize
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nltk.download('punkt')

def word_frequency_finder(text):

    """

    Computes the WFD.

    Parameters:

    text (str): The input text.

    Returns:

    FreqDist: An WFD for given input words.

    """

    # Tokenize the text.

    words = word_tokenize(text)

    # Create WFD.

    freq_dist = FreqDist(words)

    return freq_dist

# The output of this code not included as it is irrelavent.

# Create sample text.

sample_text = """

In practical applications, WFDs are used in various NLP  

pre-processing tasks

like keyword extraction, topic modeling, and sentiment 

analysis. We will talk

about these newly introduces terms later in this book.

"""

# Compute WFD.

frequency_distribution = word_frequency_finder(sample_text)
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# Print the output.

for word, frequency in frequency_distribution.items():

    print(f"Word: {word}, Frequency: {frequency}")

OUTPUT:

Word: ,, Frequency: 3:

Word: in, Frequency: 2.................

4.2.7  Antonym and Synonym Detection 
Using NLTK

NLTK provides tools for these operations through WordNet, which is a 

lexical database to organize words into synsets (groups of synonyms). We 

leverage WordNet to find out antonyms as well. Listing 4-7 demonstrates 

how easily implement NLTK functions to detect both synonyms and 

antonyms.

Listing 4-7. Synonym Detection Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

import nltk

from nltk.corpus import wordnet

# Ensure that the WordNet data is downloaded

nltk.download('wordnet')

def get_synonyms_and_antonyms(word):

    synonyms = set()

    antonyms = set()

    # Get synsets for the given word

    for syn in wordnet.synsets(word):

        # Add synonyms
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        for lemma in syn.lemmas():

            synonyms.add(lemma.name())

            # Add antonyms

            if lemma.antonyms():

                antonyms.add(lemma.antonyms()[0].name())

    return synonyms, antonyms

[nltk_data] Downloading package wordnet to C:\Users\Shailendra

[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package wordnet is already up-to-date!

# Sample word,

word = "Fast"

synonyms, antonyms = get_synonyms_and_antonyms(word)

print(f"Synonyms of {word}: {synonyms}")

print(f"Antonyms of {word}: {antonyms}")

Synonyms of Fast: {'degraded', 'riotous', 'dissipated', 'fast', 

'firm', 'immobile', 'debauched', 'quick', 'truehearted', 

'profligate', 'loyal', 'libertine', 'degenerate', 'fasting', 

'dissolute', 'flying', 'tight'}

Antonyms of Fast: {'slow'}

4.2.8  Word Similarity Calculation

Word similarity calculation measures with how two words are similar in 

meaning. It uses definitions or usage of a word in text to compare their 

similarities. Let’s try to understand it better with a simple example: “car” 

and “automobile” are similar as they both refer to the same type of vehicle; 

“cat” and “kitten” are similar as they refer to types of animals. Similarly, 

“computer” and “laptop” are related as they represent similar computing 
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devices. Comparing the meanings, one can find out which words are 

similar (or even synonymous).

Word similarity can be measured in multiple ways: by checking 

word definitions, by analysis of their usage in texts, or by using formal 

mathematical models. Formally measuring word similarities enables 

systems to understand and process human languages more effectively. 

Dissimilar words have lower word similarity scores. Listing 4-8 is a Python 

demo of this important NLP data preprocessing step.

Listing 4-8. Word Similarity Measurements Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

# Load the reqi

import nltk

from nltk.corpus import wordnet

# Download that WordNet.

nltk.download('wordnet')

def word_similarity(word1, word2):

    # Get synsets for both words

    synsets1 = wordnet.synsets(word1)

    synsets2 = wordnet.synsets(word2)

    if not synsets1 or not synsets2:

        return "One or both words are not found in WordNet."

    # Calculate similarity with all pairs of synsets.

    similarities = []

    for syn1 in synsets1:

        for syn2 in synsets2:

            similarity = syn1.wup_similarity(syn2)
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            if similarity is not None:

                similarities.append(similarity)

    # Return the highest similarity score.

     return max(similarities, default="No similarity score 

available")

# Example 1.

sample_word1 = "dog"

sample_word2 = "puppy"

similarity_score = word_similarity(sample_word1, sample_word2)

print(f"Similarity score between '{ sample_word1 }' and '{ 

sample_word2}': {similarity_score}")

OUTPUT 1:

Similarity score between 'dog' and 'puppy': 0.896551724137931

# Example 2.

sample_word1 = "Canon"

sample_word2 = "House"

similarity_score = word_similarity(sample_word1, sample_word2)

print(f"Similarity score between '{ sample_word1 }' and '{ 

sample_word2 }': {similarity_score}")

OUTPUT 2:

Similarity score between 'Canon' and 'House': 

0.42857142857142855

4.2.9  Word Sense Disambiguation Using NLTK

You have seen that many words have multiple meanings depending on the 

context in which it is being used. Word sense disambiguation (WSD) is a 

technique to find out which meaning of a word is being used in a sentence. 

WSD figures out which meaning is the best fit depending on the context.
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Let’s figure it out with a simple example word: “bat.” It can refer to a 

flying mammal or a piece of sports kit used in baseball or cricket. WSD 

determines whether “bat” means the animal or the equipment depending 

on the context of the sentence. You might be wondering how a machine 

(read) computer does all of it. The machine’s NLP software simply analyzes 

the surrounding words to clarify the intended meaning of a specific word 

under consideration (see Figure 4-4).

Figure 4-4. WSD using NLTK

NLTK again leverages its lexical resource WordNet for WSD. WordNet 

is equipped with definitions and relationships between words. NLTK 

uses algorithms that automatically choose the correct meaning of a word 

depending on its context in a sentence. Listing 4-9 is the code demo for 

this important NLP data preprocessing operation.

Listing 4-9. WSD Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

import nltk

from nltk.corpus import wordnet

from nltk.wsd import lesk
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# Ensure required data is downloaded

nltk.download('wordnet')

nltk.download('omw-1.4')

def disambiguate_word(sentence, word):

    # Apply the Lesk algorithm to disambiguate the word

    sense = lesk(nltk.word_tokenize(sentence), word)

    return sense.definition() if sense else "No sense found."

# Example usage 1

sentence = "He uses a bank to deposit his lard earned money."

word_for_WSD1 = "bank"

sense_definition1 = disambiguate_word(sentence, word_for_WSD1)

print(f"Sense of '{word}': {sense_definition1}")

Sense of 'bank': a container (usually with a slot in the top) 

for keeping money at home

# Example usage 2

sentence = "The US baseball players usually show great skills 

with bat."

word_for_WSD2 = "bat"

sense_definition2 = disambiguate_word(sentence, word_for_WSD2)

print(f"Sense of '{word}': {sense_definition2}")

OUTPUT:

Sense of 'bank': strike with, or as if with a baseball bat

4.2.10  Keyword Extraction with NLTK

In simple words, keyword extraction is getting the most important words or 

phrases from a given text corpus. Keywords capture the crux of the content. 

These keywords can be used for other NLP tasks like text summarization, 

search engine optimization, and retrieval of important information. Let’s 

take an example from our own tech world. In a technical document about 

machine learning or deep learning models, keywords might include 
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“neural networks,” “deep learning,” “machine learning,” “model accuracy,” 

and “model accuracy.” These are keywords that describe the core concepts 

and methods described in the tech document.

Keyword extraction is done by analyzing the frequency and relevance 

of words in a given text document. Standard techniques like term 

frequency (TF) and term frequency–inverse document frequency (TF–IDF) 

are often used for this purpose. These techniques highlight the significant 

words for the text under consideration. As such, simple tokenization of 

the text and computing word frequencies can identify the most important 

words. Combining it with advanced techniques like TF–IDF makes 

more sophisticated keyword extraction possible. This chapter only uses 

these techniques (as used in NLTK), but we formally discuss them in 

later chapters. Listing 4-10 is the code demo of this important NLP data 

preprocessing task.

Listing 4-10. Construct a Keyword Extractor Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

# Import necessary libraries/ resources.

import nltk

from nltk.tokenize import word_tokenize

from nltk.probability import FreqDist

from nltk.corpus import stopwords

# Download required data.

nltk.download('punkt')

nltk.download('stopwords')

def keywords_extractor(text, num_keywords=3):

    # Tokenize the input text.

    tokens = word_tokenize(text.lower())  # lowercase for 

consistency.
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    # Eliminate stopwords and non-alphanumeric tokens.

    stop_words = set(stopwords.words('english'))

     filtered_tokens = [word for word in tokens if word.

isalnum() and word not in stop_words]

    # Calculate the input word frequencies.

    freq_dist = FreqDist(filtered_tokens)

    # Extract the most frequent keywords.

     keywords = [word for word, _ in freq_dist.most_common(num_

keywords)]

    return keywords

# Example usage

sample_text = "The bank is on the city river bank. State Bank 

is the best bank in the city."

keywords = keywords_extractor(sample_text)

print(f"Extracted keywords: {keywords}")

OUTPUT:

Extracted keywords: ['bank', 'city', 'river']

This section offered an inclusive overview of some essential NLP 

data preprocessing tasks using NLTK. We explored common techniques 

such as tokenization, stop word removal, stemming, lemmatization, and 

sentence segmentation to prepare text for analysis. Adding to these basic 

NLP techniques, we also covered WFD, synonym and antonym detection, 

word similarity calculation, and WSD. Finally, we looked into keyword 

extraction techniques to get key terms out of any input text document. 

All the techniques discussed in this section are vital for transforming raw 

text information into actionable insights and improving the effectiveness 

of NLP applications. The next section discusses some important NLP 

techniques beyond the basic preprocessing tasks.
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4.3  NLP Tasks Beyond Preprocessing

This section delves into some new NLP techniques. We start with part- 

of- speech/POS tagging, a process used to label every word in a given 

input sentence considering its grammatical role, which can be a noun, 

verb, or adjective. Next, let’s explore named entity recognition, which 

identifies proper names (in a given sentence), like the name of a person, 

organizations, and locations, including cities and countries. We then 

move to a relatively known term, text classification, which categorizes text 

into predefined labels, such as categorizing emails as junk or legitimate. 

Following that, we discuss sentiment analysis, which determines the 

emotional tone behind words; examples are classifying tweets about a 

famous movie into labels: positive or negative.

Finally, we cover a bit of advanced NLP applications like language 

translation, which adapts text from one language to another. The next 

process, text summarization, condenses long text documents into their 

condensed versions while preserving key information. Word cloud 

generation is a visual illustration of word frequency. It highlights the 

most important terms in a given text document. All these techniques 

together allow a deeper and more nuanced understanding of the input text 

information. For each of these techniques, we give a hands-on, NLTK- 

based code demonstration, which is the primary focus of this book.

4.3.1  Part-of-Speech Tagging

Part-of-speech, or POS, tagging labels each word in a given input sentence 

with its grammatical role, such as noun, verb, adjective, or adverb. POS 

tagging helps in a proper understanding of the structure and meaning 

of an input text by analyzing the role of each word within the sentence. 

For example, in the sentence “She reads a book every night,” POS tagging 

assigns “she” as a pronoun, “reads” as a verb, “a” as an article, “book” 

as a noun, and “every” as an adjective. This helps us (read computers) 
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recognize the role of each word in the sentence. In simple words, by 

accurately tagging words, POS tagging offers insights into the syntax and 

grammar of a given input text document. For example, POS tagging helps 

in disambiguating words having diverse meanings based on their role 

in a sentence; POS tagging also lays the foundation for more advanced 

tasks like parsing, sentiment analysis, and named entity recognition (see 

Figure 4-5). Consider the following two sample sentences.

• Sample 1: “The light in the room was bright.”

• Sample 2: “She carried a light bag.”

Figure 4-5. POS tagging using NLTK

In sample 1, “light” serves as a noun (meaning something that 

illuminates), while in sample 2, “light” acts as an adjective (meaning 

something that is not heavy). This difference is made clear to machines 

(running NLP software) through POS tagging, which helps them to realize 

the word’s role in different contexts. POS tagging is the groundwork for 

more advanced NLP tasks that include parsing, sentiment analysis, and 

NER. Listing 4-11 is a demo that uses NLTK to accomplish POS tagging.
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Listing 4-11. POS Tagging Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

# Import libraries.

import nltk

from nltk.tokenize import word_tokenize

# Download required data.

nltk.download('punkt')

nltk.download('averaged_perceptron_tagger')

def pos_tagging(text):

    # Tokenize the text.

    tokens = word_tokenize(text)

    # Perform POS tagging.

    tagged_words = nltk.pos_tag(tokens)

    return tagged_words

# Usage demo.

sentence = "The school girl quickly ran across the park to 

catch the ice cream truck."

tagged_sentence = pos_tagging(sentence)

print(f"POS tagging result: {tagged_sentence}")

OUTPUT:

POS tagging result: [('The', 'DT'), ('school', 'NN'), ('girl', 

'NN'), ('quickly', 'RB'), ('ran', 'VBD'), ('across', 'IN'), 

('the', 'DT'), ('park', 'NN'), ('to', 'TO'), ('catch', 'VB'), 

('the', 'DT'), ('ice', 'NN'), ('cream', 'NN'), ('truck', 'NN'), 

('.', '.')]

In Listing 4-11 output, notice that several POS tags (coded as ‘DT’, ‘NN’, 

etc.) are used. For your convenience, Table 4-1 lists the meaning of each 

tag used in the output.
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Table 4-1. POS Tags Used in the Output of Code Demo

4.3.2  Named Entity Recognition with NLTK

Named entity recognition (NER) is a NLP technique that involves finding 

and categorizing explicit entities or objects within a given input text 

document (see Figure 4-6). These named entities can be an individual 

person, establishments, time or date expressions, locations, quantity 

expressions, money, percentages, and alike. NER benefits in extracting 

meaningful information from unstructured text. For example, consider the 

following sentence.

Figure 4-6. Named entity recognition with NLTK
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For example, let’s consider the sentence: “Dr. Jonson attended the 

University of London and now resides in Liverpool.” Here, the named 

entities on a high level are as follows.

• Person: “Dr. Johnson”

• Organization: “University of London”

• Location: “Liverpool”

One direct usage of NER is it can be upfront used by different NLP 

applications such as chatbots. Suppose any user asks the chatbot, “Which 

university did Dr. Jonson attend?” It has a ready answer by virtue of 

extracted entities. This way, NER makes it easier to analyze and categorize 

the content.

Let’s take one more example as follows.

Consider the sentence: “Bill Gates founded Microsoft and resides in 

Washington.”

In this sentence, the NER can tell us the high-level entities as follows.

• Person: “ Bill Gates “

• Organization: “ Microsoft “

• Location: “ Washington”

Listing 4-12 is a NER code demo using NLTK.

Listing 4-12. NER Using NLTK

# Install nltk if you have not done it already.

!pip install nltk # The code output not included here.

import nltk

from nltk import word_tokenize, pos_tag, ne_chunk

nltk.download('punkt')

nltk.download('maxent_ne_chunker')

nltk.download('words')
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def named_entity_extractor(text):

    # Tokenize.

    tokens = word_tokenize(text)

    # Perform POS tagging first.

    pos_tags = pos_tag(tokens)

    # Apply NER.

    named_entities = ne_chunk(pos_tags)

    return named_entities

# Sample usage 1.

sample_sentence1 = "Bill Gates founded Microsoft and resides in 

Washington."

ner_result = named_entity_extractor(sample_sentence1)

print(f"NER result: {ner_result}")

OUTPUT1:

NER result: (S

  (PERSON Bill/NNP)

  (PERSON Gates/NNP)

  founded/VBD

  (PERSON Microsoft/NNP)

  and/CC

  resides/NNS

  in/IN

  (GPE Washington/NNP)

  ./.)

# Sample usage 2.

sample_sentence2 = "Dr. Jonson attended University of London 

and now resides in Liverpool."

ner_result = named_entity_extractor(sample_sentence2)

print(f"NER result: {ner_result}")
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OUTPUT2:

NER result: (S

  Dr./NNP

  (PERSON Jonson/NNP)

  attended/VBD

  (ORGANIZATION University/NNP)

  of/IN

  (GPE London/NNP)

  and/CC

  now/RB

  resides/VBZ

  in/IN

  (GPE Liverpool/NNP)

  ./.)

You can decode NER codes, including NNP, VBD, NNP, and VBZ, on 

the Penn Treebank Project webpage at  www.ling.upenn.edu/courses/

Fall_2003/ling001/penn_treebank_pos.html.

4.4  Some Useful Functionalities 
Outside NLTK

This section explores a few prevailing NLP text processing functionalities 

that go outside the capabilities currently available in NLTK. These 

important functionalities include word cloud generation, language 

translation, and text summarization.

Word Cloud Generation is a NLP tool that highlights the words with 

the most frequencies from the input text. Just a glance at word cloud can 

reveal the key themes discussed in the input text document. Language 

translation (or machine translation) allows the automatic conversion of 
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input text from one language to another to make content accessible to a 

global audience. Text Summarization condenses large volumes of text into 

concise summaries that preserve the main ideas. These functionalities 

further enhance the utility of NLP applications to the international 

audience. Next, we begin by explaining word cloud generation with a 

code demo.

4.4.1  Word Cloud Generation

Word cloud generation (WSG) is an influential visual tool that is used in 

text analytics. It represents the most frequent words available within an 

input text document. Words appearing more frequently are displayed in 

larger, bolder fonts. This type of visual representation of words helps to 

quickly categorize the central themes and key terms. Word clouds are often 

used by the NLP community for exploratory data analysis (EDA). Word 

clouds are predominantly used in summarizing large text documents. 

However, word clouds do not reveal the context in which words appear. 

Despite this major limitation, word clouds are popular for initial text 

exploration. Listing 4-13 contains a sample code of WSG.

Listing 4-13. Word Cloud Generation (currently not available 

in NLTK)

# Install wordcloud if you do not have it already.

!pip install wordcloud

# Import required libraries.

import nltk

from wordcloud import WordCloud

import matplotlib.pyplot as plt

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

# Download data.
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nltk.download('punkt')

nltk.download('stopwords')

# Write necessary functions.

def text_preprocessor(text):

    """

    Tokenize and remove stopwords.

    Args:

    text (str): The imput text.

    Returns:

    str: The preprocessed text.

    """

    tokens = word_tokenize(text.lower())

     filtered_tokens = [word for word in tokens if word.

isalnum() and word not in stopwords.words('english')]

    return ' '.join(filtered_tokens)

def word_cloud_generator(text):

    """

    Generate and display word cloud.

    Args:

    text (str): The preprocessed text.

    """

     wordcloud = WordCloud(width=800, height=400, background_

color='white').generate(text)

    plt.figure(figsize=(8, 5))

    plt.imshow(wordcloud, interpolation='bilinear')

    plt.axis('off')
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    plt.show()

def main():

    # Sample text document.

    sample_text = """

     Word Cloud Generation (WSG) is an influential visual tool 

that is used in text analytics.

     It represents the most frequent words available within an 

input text document.

     Words appearing more frequently are displayed in larger, 

bolder fonts.

     This type of visual representation of words helps to 

quickly categorize the central themes and key terms.

     Word clouds are often used by the NLP community for 

exploratory data analysis EDA).

     Word clouds are predominantly used in summarizing large 

texts documents.

     However, word clouds do not reveal the context in which 

words appear.

     Despite this major limitation, word clouds are popularly 

for initial text exploration (EDA).

    """

    # Preprocess the sample text.

    pre_processed_text = text_preprocessor(sample_text)

    # Generate the word cloud.

    word_cloud_generator(pre_processed_text)

if __name__ == "__main__":

    main()
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Figure 4-7. The Word Cloud generated by the code of Listing 4-13

4.4.2  Language Translation

Language translation (or machine translation) is useful in applications 

like online translation services, multilingual customer support, and global 

content accessibility. Further, machine translation supports international 

business operations, permits cross-cultural exchanges, and gives broad 

access to digital content. In machine translation, accurate interpretation of 

the original text is critical to replicate the nuances of the original text in the 

target language.

Listing 4-14 uses the translator library for translating the input text 

because NLTK does not have this functionality.

Listing 4-14. Creating a Machine Translator with Translator Library

# Install translate if you have not done it already.

!pip install translate

from translate import Translator

def text_translator(text, from_lang='en', to_lang='es'):

    # Initialize the Translator.
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     translator = Translator(from_lang=from_lang,  

to_lang=to_lang)

    # Translate the text from English to Spanish.

    translated_text = translator.translate(text)

    return translated_text

# Example usage 1.

Original_input_text = "Hello, how are you today? I hope you're 

doing well."

translated_text = text_translator(Original_input_text)

print(f"Original input text: {Original_input_text}")

print(f"Translated text: {translated_text}")

OUTPUT1:

Original input text: Hello, how are you today? I hope you're 

doing well.

Translated text: Hola, ¿cómo estás hoy? Espero que lo estés 

haciendo bien.

# Example usage 2.

original_text = "Hello, we won the baseball game today and 

received the prize money."

translated_text = text_translator(original_text)

print(f"Original text: {original_text}")

print(f"Translated text: {translated_text}")

OUTPUT2:

Original text: Hello, we won the baseball game today and 

received the prize money.

Translated text: Hola, hoy ganamos el juego de béisbol y 

recibimos el dinero del premio.

By the way, if you happen to know Spanish, you can judge the quality 

of this translation. Doing this, you may discover that probably the Spanish 

text in both the cases in the demo is understandable, but improvements 

are still possible for better clarity and correctness.
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4.4.3  Text Summarization

Text summarization is predominantly useful in quickly understanding 

the main points of long articles, reports, or documents without reading 

them completely. It’s a key skill in the fields like journalism, legal work, 

and academic research. Summarization has increasingly become central 

in automated systems like chatbots, recommendation engines, and news 

aggregators. In all these applications, delivering concise information 

is critical. Summarization is challenged to accurately identify the most 

relevant content to keep the text summary contextually appropriate. 

Listing 4-15 is a code demonstration of automatic text summarization.

Listing 4-15. Text Summarization (currently not available in NLTK)

# Install sumy if you have not done already.

!pip install sumy

# Import the required libraries.

from sumy.parsers.plaintext import PlaintextParser

from sumy.nlp.tokenizers import Tokenizer

from sumy.summarizers.lsa import LsaSummarizer

def text_summarizer(text, sentence_count=2):

    """

    Summarize the input text using the LSA algorithm.

    Args:

    text (str): The input text.

     sentence_count (int): The count of sentences to include in 

the final summary.

    Returns:

    str: The summarized text.

    """
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     parser = PlaintextParser.from_string(text, Tokenizer 

("english"))

    summarizer = LsaSummarizer()

    summary = summarizer(parser.document, sentence_count)

    return ' '.join(str(sentence) for sentence in summary)

def main():

    # Sample text

    sample_text = """ Text summarization is predominantly 

useful in quickly understanding the main points of long 

articles, reports, or documents without reading them in 

completely. Text summarization is a key skill in the 

fields like journalism, legal work, and academic research. 

Summarization has increasingly become central in automated 

systems like chatbots, recommendation engines, and news 

aggregators. In all these applications delivering concise 

information is critical. Summarization challenged to accurately 

identifying the most relevant content to keep the text summary

contextually appropriate. Below is code demonstration of 

automatic text summarization.

    """

    # Generate the summary

    summary = text_summarizer(sample_text)

    print("Original Text:")

    print(sample_text)

    print("\nSummary:")

    print(summary)

if __name__ == "__main__":

    main()
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OUTPUT:

Original Text:

 Text summarization is predominantly useful in quickly 

understanding the main points of long articles, reports, 

or documents without reading them in completely. Text 

summarization is a key skill in the fields like journalism, 

legal work, and academic research. Summarization has 

increasingly become central in automated systems like chatbots, 

recommendation engines, and news aggregators. In all these 

applications delivering concise information is critical. 

Summarization challenged to accurately identifying the most 

relevant content to keep the text summary contextually 

appropriate. Below is code demonstration of automatic text 

summarization.

Summary:

Text summarization is a key skill in the fields like 

journalism, legal work, and academic research. Summarization 

has increasingly become central in automated systems like 

chatbots, recommendation engines, and news aggregators.

Note there are many other important python libraries, including 

spaCy, gensim, and several others. Due to the space limits of 

individual chapters, we discuss them with the relevant NLp tasks that 

can be best solved by these libraries. stay tuned!
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4.5  Chapter Recap

This chapter provided an in-depth exploration of various NLP techniques. 

Preprocessing of the raw text data is at the core of NLP to make the raw 

data usable for further analysis. We began the chapter by text tokenization, 

which involves breaking down text into manageable pieces. Following 

this, we tackled the removal of irrelevant words, called stop words, to 

keep the focus on more meaningful content. We also explored stemming 

and lemmatization. These are the techniques that simplify words to their 

root forms so that similar words can be grouped together to improve the 

analysis process.

Sentence segmentation (along with finding WFD) permitted us to 

better understand the input text structures. Finding word frequencies 

also helped us to categorize key terms within a document. Further, we 

explored how to detect synonyms and antonyms that are crucial for NLP 

tasks like paraphrasing. We then progressed to more complex tasks like 

calculating word similarity. Finding similarity allows machines to compare 

and contrast different pieces of text. Exploring WSD helped us learn how to 

resolve word ambiguities. WSD finds the correct meaning of a word based 

on its context in the input text. Keyword extraction was another key focus. 

It enabled us to focus on the most relevant terms within a large text corpus.

Moving beyond text preprocessing, we explored tasks such as POS 

tagging and NER. POS tagging assigns the proper grammatical role to 

every word, while NER categorizes entities like names, organizations, and 

locations within a given text corpus. These tools make possible deeper text 

analysis and a better understanding of text.

In the last leg of this chapter, we explored some important functionalities 

outside of NLTK. It included word cloud generation for exploratory analysis 

of text data. We also studied machine translation for content globalization 

and text summarization for condensing lengthy texts into concise 

summaries. The aim of this chapter was to equip you with NLP techniques 

and provide a comprehensive toolkit for handling and analyzing text data. 

Chapter 4  NLp Data preproCessiNg tasks with NLtk



148

Code demos are given with every technique discussed in this chapter so that 

you can directly use the given code for a variety of NLP applications, ranging 

from academic research to hardcore business applications.

4.6  Exercises

 1. In any text analytics task, such as text classification 

or Twitter sentiment analysis (about a product or a 

movie), compare the results with and without the stop 

words. If you are new to text classification or Twitter 

sentiment analysis, you can get the tutorials on Kaggle.

com or with many other articles. These text analytics 

projects are covered in the upcoming chapters.

 2. Generate the text summary and word cloud for a 

relatively large text document (minimum two pages) 

and observe if all the prominent words highlighted 

in the word cloud appear in your summary.
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CHAPTER 5

Lexical Analysis

5.1  Why You Should Read This Chapter

For machines to understand and structure the input text, breaking down 

text into smaller units and categorizing them is an essential process. 

Lexical analysis exactly does this; it involves breaking down the input 

text into its utmost basic units like words, morphemes, and tokens. 

Morphemes are the smallest units of meaning in a language. They 

represent distinct words, like “dog” or “read.” Morphemes also includes 

parts of words, such as prefixes (“un-”), suffixes (“-ing”), or roots (“tele-” 

as in “telecommunication”). Morphemes are fundamental blocks in the 

structure of any language.

Lexical analysis transforms unstructured text into structured data, 

which is essential for advanced NLP tasks like parsing, semantic analysis, 

and information retrieval. Accurate identification and categorization 

of language components using lexical analysis helps in improving the 

efficiency and effectiveness of several real-life NLP applications. Lexical 

analysis ultimately enables computers to better understand what humans 

speak and write.

https://doi.org/10.1007/979-8-8688-1582-9_5#DOI
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5.2  Morphological Analysis Revisited

We discussed morphological analysis at the start of this chapter. By 

learning how morphemes combine to form words, we can understand 

language patterns and enable several language processing tasks like 

stemming and lemmatization. Let’s try to understand morphemes with the 

help of the  following three familiar words.

• The word “unhappiness” has three morphemes. The 

prefix “un-” (meaning “not”), the root word “happy” 

(meaning “joyful”), and finally the suffix “-ness” 

(meaning “state of being”). Combined, they form the 

word “unhappiness.”

• “Replayed” has two morphemes. The prefix “re-

” (meaning “again”) and the root word “played” 

(meaning “engaged in a game or activity”).

• Similarly, the word “cats” contains two morphemes: 

the base noun “cat” and the suffix “-s” (representing the 

plural form).

By analyzing the structure of words, we can efficiently extract 

meaningful features and develop more effective language models.

There are two major categories of morphemes.

• Free morphemes can exist and stand alone as 

independent words with meaning. Examples are 

“book,” “run,” and “happy.” These morphemes 

convey meaning even if they are not attached to any 

other word.

• Bound morphemes must be attached to a free 

morpheme to have meaning. Consider our familiar 

example, “unhappy.” Here, prefixes like “un-” in the 
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base word “happy” modify the meaning of the base 

word. This way, bound morphemes further add 

nuances or grammatical context to words.

Free morphemes represent the basic vocabulary units of a language, 

while bound morphemes, such as prefixes, suffixes, and infixes, 

help us to understand how words are modified and related to each 

other.  Understanding bound morphemes is helpful in stemming and 

lemmatization because both processes aim to reduce words to their base 

or root forms. This knowledge can be useful in search engines, which need 

different forms of a word (e.g., “run,” “running,” “runner”) to be recognized 

as related. Additionally, knowledge morphemes allow more accurate 

matching of words and phrases, even if they appear in different forms. 

For example, knowing that the following three words, “running,” “runner,” 

and “runs,” come from the same morpheme (base), “run” can improve the 

grouping of connected texts.

Reading this, you can imagine that morphological analysis can find 

its uses in almost all the NLP techniques that we studied in Chapter 4. For 

example, morphological analysis is useful in stemming and lemmatization, 

part-of-speech (POS) tagging, named entity recognition (NER), machine 

translation, text normalization, sentiment analysis, and several other 

NLP tasks.

The code demos for the morphological analysis are presented in the 

following sections, which contain the related techniques.

5.3  Tokenization Revisited

We studied basic tokenization in the previous chapter. We also studied how 

the word_tokenize() and sent_tokenize() methods from Python’s NLTK 

library can be utilized to break a larger text corpus (or text document) at 

sentence level or word level, respectively. Gensim and Keras are a two 

other Python open source libraries that are available for tokenization.
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5.3.1  Code Demos

Let’s discuss some other tokenizers: whitespace, dictionary-based, rule- 

based, punctuation-based, tweets, and multi-word expressions. Each 

tokenizer serves a different purpose. We provide a bit of theory about each 

tokenizer in the code itself.

5.3.1.1  Whitespace Tokenization

Whitespace tokenization breaks a text document based on spaces and 

line breaks. It considers every section of input text divided by whitespace 

as a distinct token. Whitespace tokenization serves as a quick way to 

break down text into words or phrases. This method is especially used 

for processing structured data, including log files or code, in which 

whitespaces have specific meanings.

Whitespace tokenization is less worried about the grammatical 

structure of input texts. Its main focus is on the visual separation of 

text. Whitespace tokenization is used in the NLP tasks where sentence 

boundaries are not as important. Examples include keyword extraction or 

simple text preprocessing, where the focus is on quickly splitting the input 

text into smaller and more manageable tasks. The following is a code demo.

from nltk.tokenize import WhitespaceTokenizer

from typing import List

def whitespace_tokenizer(text: str) -> List[str]:

    """

     Tokenizes the input text based on whitespace characters 

(spaces, tabs, newlines).

    Parameters:

    -----------

    text : str

        The input text to be tokenized.
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    Returns:

    --------

    List[str]

        A list of tokens.

    """

    tokenizer = WhitespaceTokenizer()

    tokens = tokenizer.tokenize(text)

    return tokens

# Example usage

if __name__ == "__main__":

     sample_text = """Whitespace tokenization breaks a text 

document based on spaces and line breaks. It considers every 

section of input text divided by whitespace as a distinct 

token. Whitespace tokenization serves as a quick way to break 

down text into words or phrases. This method is especially 

used for processing structured data including logs files or 

code, in which whitespaces have specific meaning.

    """

    tokens = whitespace_tokenize(sample_text)

    print("Tokens:", tokens)

OUTPUT:

Tokens: ['Whitespace', 'tokenization', 'breaks', 'a', 'text', 

'document', 'based', 'on', 'spaces', 'and', 'line', 'breaks.', 

'It', 'considers', 'every', 'section', 'of', 'input', 'text', 

'divided', 'by', 'whitespace', 'as', 'a', 'distinct', 'token.', 

'Whitespace', 'tokenization', 'serves', 'as', 'a', 'quick', 

'way', 'to', 'break', 'down', 'text', 'into', 'words', 'or', 

'phrases.', 'This', 'method', 'is', 'especially', 'used', 

'for', 'processing', 'structured', 'data', 'including', 'logs', 

'files', 'or', 'code,', 'in', 'which', 'whitespaces', 'have', 

'specific', 'meaning.']
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5.3.1.2  Dictionary-Based Tokenization

In dictionary-based tokenization, the tokens are based on the words that 

are already available in the dictionary. In case the token is not found in the 

dictionary, special rules are applied to tokenize it.

Dictionary-based tokenization is used where identifying and extracting 

predefined phrases or terms is more important. It ensures use in domain- 

specific texts, where consistency in recognizing specific tokens is more 

important than simple tokens. This method is particularly useful in NLP 

tasks like medical text processing and parsing of legal documents, where 

precise recognition of terms is critical.

import nltk

from nltk.tokenize import MWETokenizer

from typing import List

# NLTK data

nltk.download('punkt')

def dictionary_based_tokenizer(text: str, dictionary: 

List[List[str]]) -> List[str]:

    """

    Tokenizes the input text based on a predefined dictionary.

    Parameters:

    -----------

    text : str

        The input text string.

    dictionary : List[List[str]]

        A list of expressions, recognized as single tokens.

    Returns:

    --------

    List[str]

        A list of tokens.
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    """

    # The '_' argument joinS the words with an underscore (_).

    tokenizer = MWETokenizer(dictionary, separator='_')

    tokens = tokenizer.tokenize(nltk.word_tokenize(text))

    return tokens

# Example usage

if __name__ == "__main__":

    # Define a dictionary of multi-word expressions

    dictionary = [

        ['heart', 'attack'],

        ['machine', 'learning'],

        ['New', 'York'],

    ]

     sample_text = "John suffered a messive heart attack. He was 

enrolled in machine learning in Washington DC."

     tokens = dictionary_based_tokenizer(sample_text, 

dictionary)

    print("Tokens:", tokens)

OUTPUT:

Tokens: ['John', 'suffered', 'a', 'messive', 'heart_attack', 

'.', 'He', 'was', 'enrolled', 'in', 'machine_learning', 'in', 

'Washington', 'DC', '.']

Note You may notice in the output that ‘heart attack’ appears as 

‘heart_attack’ and ‘machine learning’ as ‘machine_learning’.
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5.3.1.3  Rule-based Tokenization

Rule-based tokenization is particularly useful in text preprocessing 

tasks where precise structures or formats must be preserved. Regular 

expressions can be used to fine-tune to handle various linguistic nuances 

or specific text formats. The following uses RegexpTokenizer from the 

NLTK along with required regular expression patterns.

from nltk.tokenize import RegexpTokenizer

from typing import List

def rule_based_tokenizer(text: str) -> List[str]:

    """

    Tokenizes the input text based on regular expressions.

    Parameters:

    -----------

    text : str

        The input string.

    Returns:

    --------

    List[str]

        A list of tokens.

    """

    # Define a regular expressions for specific tasks.

    # Rule 1: Match abbreviations like "U.K.", "Dr."

     # Rule 2: Match words including those with apostrophes like 

"she's", "haven't")

    # Rule 3: Separately match punctuations.

    pattern = r'''(?x)               #  Set flag to allow 

verbose regex

                  (?:[A-Za-z]\.)+    # Abbreviations like U.K.

                | \w+(?:'\w+)?       # Words with apostrophes
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                | [^\w\s]            # Separate punctuations

                '''

    # Write a RegexpTokenizer.

    tokenizer = RegexpTokenizer(pattern)

    # Tokenize.

    tokens = tokenizer.tokenize(text)

    return tokens

# Example usage

if __name__ == "__main__":

    sample_text = """Dr. John's a rocket engineer in the U.K.

                   U.A.E. govt. has awarded him many awards."""

    tokens = rule_based_tokenizer(sample_text)

    print("Tokens:", tokens)

OUTPUT:

Tokens: ['Dr', '.', "John's", 'a', 'rocket', 'engineer', 'in', 

'the', 'U.K.', 'U.A.E.', 'govt', '.', 'has', 'awarded', 'him', 

'many', 'awards', '.']

• Please note, in ‘Dr’, ‘U.K.’, and ‘U.A.E.’, the tokenizer has 

preserved common abbreviations and acronyms and 

treated them as single tokens.

• ‘govt’: This is treated as a single token, preserving 

abbreviations that are commonly used in written 

English.

• For “John’s”, the tokenizer preserves the apostrophe 

and the following ‘s’ as part of the token.
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5.3.1.4  Punctuation-Based Tokenizer

This tokenizer splits the input text on whitespace and punctuations while 

retaining the punctuations. Punctuation-based tokenization overcomes 

issues and provides a meaningful token. Punctuation-based tokenization 

solves the problem of simply splitting the input text on whitespace. The 

following is a simple code demo.

#import wordpunct_tokenize from nltk.

from nltk.tokenize import wordpunct_tokenize

text = "Mr.Johnson owns three houses in New York on: 22nd 

street, downton,and 42nd street."

tokens = wordpunct_tokenize(text)

tokens

OUTPUT:

['Mr',

 '.',

 'Johnson',

 'owns',

 'three',

 'houses',

 'in',

 'New',

 'York',

 'on',

 ':',

 '22nd',

 'street',

 ',',

 'downton',

 ',',
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 'and',

 '42nd',

 'street',

 '.']

Note The output retains punctuation marks as separate tokens. 

It helps in understanding the sentence structure. The presence of 

punctuation tokens helps preserve the meaning and context of the 

original sentence.

5.3.1.5  Tweet Tokenizer

Tweets can be treated as special texts like several others because they have 

a typical structure. The generic tokenizers may fail to produce feasible 

tokens when applied to the datasets containing tweets. NLTK has a special 

tokenizer for such cases. The Tweet tokenizer is a rule-based tokenizer that 

can be used to remove problematic characters, HTML code, and Twitter 

handles. This tokenizer can normalize the length of input text by reducing 

the occurrence of repeated letters. Additionally, the tweet tokenizer is 

equipped to effectively deal with hashtags and mentions while preserving 

their significance. The tokenizer can also effectively manage emoticons 

and special symbols. Note that hashtags and emoticons are common 

in tweets. The following is a short but reusable code demo using this 

tokenizer.

from nltk.tokenize import TweetTokenizer

def punctuation_based_tokenizer(text):

    """

     Tokenizes the input text using NLTK's TweetTokenizer, which 

handles punctuation and special characters
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    commonly found in tweets.

    Parameters:

    text (str): The input text to be tokenized.

    Returns:

     list: A list of tokens, including words and 

punctuation marks.

    """

    # Initialize the tokenizer.

    tokenizer = TweetTokenizer()

    # Tokenize.

    tokens = tokenizer.tokenize(text)

    return tokens

# Example usage

if __name__ == "__main__":

    Sample_text = """Mr.Johnson owns three houses in New York!

    22nd street, downton,and 42nd street." #marvelous @Rita"

    """

    tokens = punctuation_based_tokenizer(Sample_text)

    print(tokens)

OUTPUT:

['Mr.Johnson', 'owns', 'three', 'houses', 'in', 'New', 'York', 

'!', '22nd', 'street', ',', 'downton', ',', 'and', '42nd', 

'street', '.', '"', '#marvelous', '@Rita', '"']

• Please note: Punctuation marks like !, ,, and . are 

preserved as separate tokens.

• Hashtags (#marvelous) and mentions (@Rita) are 

preserved as distinct tokens.
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• Mr.Johnson is kept intact.

• These are examples to put an emphasis on the fact that 

TweetTokenizer is specifically tailored for the nuances 

of social media text.

5.3.1.6  MWE Tokenizer

A multi-word expression (MWE) tokenizer handles sequences of 

words that act as a single unit in the input text. Examples include 

idiomatic phrases, compound nouns, and fixed expressions that can 

be misunderstood if tokenized into separate words. Treating these 

expressions as single tokens preserves their intended meaning and helps 

in accurate text analysis. Listing 5-1 is a text demo of this tokenizer with a 

reusable function.

Listing 5-1. Program to Demonstrate MWE Tokenizer

from nltk.tokenize import MWETokenizer

def mwe_tokenizer(text, mwe_list):

    """

     Tokenizes while preserving indicated multi-word 

expressions (MWEs).

    Parameters:

    text (str): The input text.

     mwe_list (list of tuples): The list of MWEs to be treated 

as single tokens.

    Returns:

     list: A list of tokens with MWEs preserved as 

single tokens.

    """
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    # Initialize the MWETokenizer with the provided MWEs

    tokenizer = MWETokenizer(mwe_list)

    # Tokenize the input text

    tokens = tokenizer.tokenize(text.split())

    return tokens

if __name__ == "__main__":

    # Define multi-word expressions.

    mwe_list = [

        ('M', 'W', 'E'),

        ('Multi', 'Word', 'Tokenizer'),

        ('Natural', 'Language', 'Processing'),

        ('pre', 'processing')

    ]

 # Input text

text = "M W E Tokenizer is an advanced tokenizer in Natural 

Language Processing pre processing tasks"

# Perform tokenization with MWEs

tokenized = mwe_tokenizer(text, mwe_list)

# Print the results.

print(tokenized)

OUTPUT:

['M_W_E', 'Tokenizer', 'is', 'an', 'advanced', 'tokenizer', 

'in', 'Natural_Language_Processing', 'pre_processing', 'tasks']

• Note that M_W_E, natural language processing and 

preprocessing are combined as single units as per the 

given mwe_list.

• Other task-specific tokenizers include Penn  Treebank/

default tokenization, spaCy, Moses, and Subword. They 

are not covered in this book.
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• Penn Treebank/default tokenization is used for 

splitting the input text into tokens depending on 

linguistic rules. This tokenizer is used for syntactic 

parsing in the Penn Treebank corpus, which is 

a popular annotated text dataset that contains 

syntactically parsed sentences and POS tags. It is 

primarily used for training and evaluating NLP models.

• The Spacy tokenizer is modeled to provide efficient 

rule-based tokenization that supports intricate 

linguistic structures. It comes default with the spaCy 

NLP library.

• The Moses tokenizer is used for machine translation 

tasks. It can handle punctuations and special 

characters to advance alignment and improve 

translation quality.

• Subword tokenization breaks down words into smaller 

units or subwords. It’s specially made to deal with out- 

of- vocabulary words.

5.3.1.7  Bag-of-Words Model

The bag-of-words (BoW) model is classically done after tokenization, 

which is then used to create the BoW representation. The BoW model is 

one of the primary techniques in NLP. BoW is used to represent text data 

as a collection of words, regardless of grammar and order of words in the 

input text. BoW works on the frequency or presence of words in a text. This 

is the technique it employs to convert text into numerical features that 

are essential for further analysis. BoW technique treats every word as an 

individual token and creates a “bag,” in which words appearing frequently 

are considered to be dominating.
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BoW and tokenization are related concepts. Tokens are the building 

blocks for the BoW model. The model then counts the occurrence and 

frequency of each token across the input text. The BoW model is widely 

used for many NLP tasks, such as text classification and sentiment analysis. 

This technique transforms text into a machine-readable numeric format. 

We demonstrate the BoW model with an example.

Once the tokenization step in text preprocessing is complete, we are 

left with variable-length sequences of text (each sentence has a different 

number of words). However, machine learning algorithms need fixed- 

length vectors of numbers for each sentence in the larger input text. The 

BoW model overcomes this challenge for us. It counts how many times 

every word appears in an input text document with multiple sentences 

(see Figure 5-1). It is like keeping all tokens in a bag where the order of 

the words is ignored. We were only concerned about whether a word 

appeared or not.

Figure 5-1. BoW example

Figure 5-1 has four inputs sentenced as numbered toward the left. 

All these four sentences combined only five unique words, as shown 

in the table heading row. For the first sentence, “the red dog,” only the 

cells corresponding to the words “the,” “red,” and “dog” have an entry of 

number ‘1’ each. All the remaining cells have an entry of numeric “0.”  
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We did the same for all the remaining three sentences. Once the BoW 

process is complete, there are numeric and common length vectors for all 

the input sentences.

In the first sentence,” the red dog,” the corresponding numeric vector 

is [1,1,1,0,0,0], and similarly, for “cat eats dog,” there are the corresponding 

vector [0,0,1,1,1,0]. There are similar vectors for the sentences 3 and 4 

as well.

Two things were achieved in this process.

• Text sentences were converted to machine-readable 

numeric format.

• All vectors were standardized to the exact length as 

required by machine learning algorithms.

There is linguistic reasoning behind this approach of the BoW model: 

similar text documents share similar domain-specific vocabularies. For 

instance, all football-related articles frequently use words like score, pass, 

and team. Weather reports, on the other hand, use an entirely different set 

of words, such as rain, sun, and umbrella.

Remember to remove stop words to make it easier to identify similar 

documents, as stop words are common in almost all documents.

Now, you have come to the end of this section, where we explored 

several tokenizers and the BoW model to deal with special cases and 

specific text processing needs. Whitespace tokenization is the most upfront 

approach, which breaks text based on spaces. It works well for simpler 

applications. Dictionary-based tokenizers leverage predefined word lists 

to guarantee accurate token segmentation. Such tokenizers are used to 

handle known terms and proper nouns. Rule-based tokenizers apply 

predefined language rules to accommodate various text patterns and 

exceptions.
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Punctuation-based tokenizers list punctuation marks as delimiters. 

It’s useful in cases where text punctuations play a different role. Tweet 

Tokenizers are designed to handle exclusive aspects of social media tweets 

that include hashtags, mentions, and emojis. Finally, the MWE tokenizers 

deal with the challenge of multi-word expressions to ensure that common 

phrases and idiomatic expressions are treated as single tokens. We closed 

this section by defining a few more specific tokenizers. Every tokenizer 

is designed for a specific case. One has to be careful while choosing 

tokenizers. This choice is dependent on the requirements of the text and 

the task at hand.

5.4  Stemming Revisited

Tokenization separates text into words, BoW then counts their frequency, 

and stemming cuts them to root forms—all three steps help to convert 

raw input text into usable features intended for NLP models. The previous 

chapter used the Porter stemmer for our code demo. It is one of the 

earliest stemming algorithms. Porter stemmer has been widely tested and 

used across various NLP applications for its efficiency and simplicity in 

breaking words into their root forms. One more reason for this widespread 

popularity and use is that its stemming rules are well structured to avoid 

over-stemming and under-stemming. Over-stemming is where different 

(distinct) words are wrongly reduced to the same stem. Under-stemming 

is the opposite, where closely related words are not reduced to a desired 

common stem.

A few other stemmers are available, each designed for a specific 

purpose or cause. They include the Snowball stemmer and the Lancaster 

stemmer.
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5.4.1  Code Demo for Multiple Stemmers

Let’s examine a code demo for each of these stemmers. The code provides 

a short description and purpose for why it is designed.

5.4.1.1  Snowball or Porter2 Stemmer

The Snowball stemmer is also called the Porter2 Stemmer as it’s a 

modification over the original Porter algorithm. Snowball stemmer has 

improved rules for greater accuracy and consistency. It can be used across 

multiple languages, avoiding over- and under-stemming.

The following is a code demo that demonstrates the difference 

between Porter and Snowball stemmers.

# Import necessary libraries

from nltk.tokenize import word_tokenize

from nltk.stem import PorterStemmer, SnowballStemmer

import nltk

# Download usual nltk resources.

nltk.download('punkt')

# Initialize the stemmers.

porter_stemmer = PorterStemmer()

snowball_stemmer = SnowballStemmer("english")

# Create the sample text.

text = "In the summer, the researchers were analyzing various 

hypotheses about the future development."

# Tokenize the sample text.

tokens = word_tokenize(text)

# Apply stemmers.

porter_tokens = [porter_stemmer.stem(token) for token 
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in tokens]

snowball_tokens = [snowball_stemmer.stem(token) for token 

in tokens]

# Print results.

print("Original Tokens: ", tokens)

print("Porter Stemmed Tokens: ", porter_tokens)

print("Snowball Stemmed Tokens: ", snowball_tokens)

OUTPUT:

Original Tokens:  ['In', 'the', 'summer', ',', 'the', 

'researchers', 'were', 'analyzing', 'various', 'hypotheses', 

'about', 'the', 'future', 'development', '.']

Porter Stemmed Tokens:  ['in', 'the', 'summer', ',', 'the', 

'research', 'were', 'analyz', 'variou', 'hypothes', 'about', 

'the', 'futur', 'develop', '.']

Snowball Stemmed Tokens:  ['in', 'the', 'summer', ',', 'the', 

'research', 'were', 'analyz', 'various', 'hypothes', 'about', 

'the', 'futur', 'develop', '.']

[nltk_data] Downloading package punkt to C:\Users\Shailendra

[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package punkt is already up-to-date!

• Please note: From the original sentence, for the word 

“various”, Snowball stemmer it as “various”, which 

better keeps its meaning. Porter stemmer, on the other 

hand, reduces the same word as ‘variou’.

5.4.1.2  Lancaster Stemmer

The Lancaster stemmer is one of the most aggressive stemming 

approaches because it works on a set of straightforward, recursive rules to 

cut the input words to their root forms. It is predominantly useful in NLP 

applications requiring a high level of generalization. For this purpose, it 
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can sacrifice some precision by over-stemming. Applications like topic 

modeling focus more on broad themes rather than exact word forms. In 

such cases, the Lancaster stemmer is applied to generalize terms to their 

root forms to help identify common topics. Listing 5-2 is its code demo 

with the Porter stemmer.

Listing 5-2. Program to Demonstrate Lancaster Stemmer

import nltk

from nltk.tokenize import word_tokenize

from nltk.stem import PorterStemmer, LancasterStemmer

# Download resources.

nltk.download('punkt')

# Initialize both the stemmers.

porter_stemmer = PorterStemmer()

lancaster_stemmer = LancasterStemmer()

# Sample text.

sample_text = "scientific methodologies used by researchers 

were aimed at improving accuracy in predictive analytics."

# Tokenize the text

tokens = word_tokenize(sample_text)

# Apply Porter Stemmer.

porter_tokens = [porter_stemmer.stem(token) for token 

in tokens]

# Apply Lancaster Stemmer.

lancaster_tokens = [lancaster_stemmer.stem(token) for token 

in tokens]

# Print output.

print("Original Tokens: ", tokens)
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print("Porter Stemmed Tokens: ", porter_tokens)

print("Lancaster Stemmed Tokens: ", lancaster_tokens)

OUTPUT:

Original Tokens:  ['The', 'scientific', 'methodologies', 

'used', 'by', 'researchers', 'were', 'aimed', 'at', 

'improving', 'accuracy', 'in', 'predictive', 'analytics', '.']

Porter Stemmed Tokens:  ['the', 'scientif', 'methodolog', 

'use', 'by', 'research', 'were', 'aim', 'at', 'improv', 

'accuraci', 'in', 'predict', 'analyt', '.']

Lancaster Stemmed Tokens:  ['the', 'sci', 'methodolog', 'us', 

'by', 'research', 'wer', 'aim', 'at', 'improv', 'acc', 'in', 

'predict', 'analys', '.']

[nltk_data] Downloading package punkt to C:\Users\Shailendra

[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package punkt is already up-to-date!

• ‘were’ to ‘were’ only. It preserves more of the original 

word form.

• At the same time, the Lancaster stemmer applies a 

more aggressive reduction to other words like “were” 

to “wer.”

• The same difference you can notice for ‘accuracy.’ 

Porter stemmer reduces it to ‘accuraci’ while Lancaster 

stemmer makes it ‘acc.’

So far, we have covered the Porter stemmer, Snowball stemmer, 

and Lancaster stemmer. Porter stemmer is a foundational tool in NLP, 

while other more specialized stemmers like the Snowball and Lancaster 

address specific cases. The Snowball stemmer is an improved version of 

the Porter stemmer, specially designed for handling a broader range of 

languages with greater accuracy. In contrast, Lancaster stemmer takes 
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an aggressive stemming approach, which makes it particularly effective 

in environments requiring a high level of generalization. Each of these 

stemmers handles a specialized use case. Having said that, let’s turn our 

focus to  lemmatization.

5.5  Lemmatization Revisited

As a recap, tokenization breaks down the input text into words 

(tokens), BoW counts them, and stemming simplifies the tokens to 

roots. Lemmatization further refines them to accurate base forms for 

better extraction of NLP features aimed at NLP models. The previous 

chapter discussed lemmatization and its Python code demo at an 

introductory level. This section focuses on the major challenges faced 

by this foundational NLP technique and explores other lemmatizers that 

may help.

Lemmatization is faced with several challenges. First, it depends 

heavily on the availability and quality of lexical resources. If the lexical 

database does not contain specific entries or it has inaccuracies, the 

lemmatization process may yield incorrect or incomplete results. The 

second challenge can be polysemy, where a single word has multiple 

meanings. The lemmatizer must be able to resolve the correct meaning 

depending on context, which is a challenge without advanced semantic 

understanding. Additionally, lemmatization is generally a resource-

intensive process when compared to stemming. This can be a major 

challenge when the focus is to improve performance, like in real-time NLP 

applications that involve large datasets, and processing speed is critical. 

There are rule-based, dictionary- based, and machine learning–based 

lemmatizations, each with its own advantages. We do not go into detail 

here, but you can explore further.
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There are many popular lemmatizers available in the NLP domain. 

These include the WordNet lemmatizer (NLTK), spaCy lemmatizer, 

TextBlob lemmatizer, Pattern lemmatizer, Stanford NLP lemmatizer, and 

Gensim lemmatizer. Each stands for a different purpose. The following 

section delve straights into the code.

5.5.1  Code Demo for Multiple Lemmatizers

Due to space constraints, the code demos are only for spaCy lemmatizer 

and TextBlob lemmatizer. As usual, we provide a brief explanation and 

purpose of each of these three lemmatizers in the code demos itself.

5.5.1.1  WordNet Lemmatizer (NLTK)

The spaCy lemmatizer is designed using a combination of rule-based and 

statistical methods to find the base forms of words. It comes integrated 

with the spaCy NLP library. This lemmatizer is predominantly effective 

for high-performance and context-aware lemmatization because of its 

accuracy in reducing words to their base forms. NER, dependency parsing, 

advanced text analytics, and large-scale data processing are the NLP 

applications that especially leverage this lemmatizer. The following is a 

code demo.

# Install spacy if you have not done it already.

!pip install spacy

# Install SpaCy English model.

!python -m spacy download en_core_web_sm

import spacy

# Load the SpaCy English model.

nlp = spacy.load('en_core_web_sm')

# Create Sample text.

text = """The SpaCy lemmatizer is designed using a combination 
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of rule-based and statistical methods

to find the base forms of words. It comes integrated with the 

SpaCy NLP library.

"""

# Process the text using SpaCyEnglish model.

doc = nlp(text)

# Get lemmatized forms.

lemmatized_tokens = [(token.text, token.lemma_) for 

token in doc]

# Print the output.

print("\n")

print("OUTPUT")

print("\n")

print("Original Text: ", text)

print("Lemmatized Tokens: ", lemmatized_tokens)

OUTPUT

Original Text:  The SpaCy lemmatizer is designed using a 

combination of rule-based and statistical methods

to find the base forms of words. It comes integrated with the 

SpaCy NLP library.

Lemmatized Tokens:  [('The', 'the'), ('SpaCy', 'SpaCy'), 

('lemmatizer', 'lemmatizer'), ('is', 'be'), ('designed', 

'design'), ('using', 'use'), ('a', 'a'), ('combination', 

'combination'), ('of', 'of'), ('rule', 'rule'), ('-', 

'-'), ('based', 'base'), ('and', 'and'), ('statistical', 

'statistical'), ('methods', 'method'), ('\n', '\n'), ('to', 

'to'), ('find', 'find'), ('the', 'the'), ('base', 'base'), 

('forms', 'form'), ('of', 'of'), ('words', 'word'), ('.', '.'), 

CHAPTER 5  LEXICAL ANALYSIS



174

('It', 'it'), ('comes', 'come'), ('integrated', 'integrate'), 

('with', 'with'), ('the', 'the'), ('SpaCy', 'SpaCy'), ('NLP', 

'NLP'), ('library', 'library'), ('.', '.'), ('\n', '\n')]

• Note that all the base forms extracted with spaCy are 

accurate and carry usable meanings.

5.5.1.2  The spaCy Lemmatizer

The spaCy lemmatizer is known for its high speed and efficiency. It is 

optimized to swiftly process large amounts of text data. NLTK also stands 

for a solid performance but tends to be slower as compared to spaCy when 

processing huge of text data. The following is a code demo.

import spacy

# These English pipelines have an inbuilt rule-based 

lemmatizer.

nlp = spacy.load("en_core_web_sm")

lemmatizer = nlp.get_pipe("lemmatizer")

print(lemmatizer.mode)  # 'rule'

sample_doc = nlp(""" The SpaCy lemmatizer is designed using a 

combination of rule-based and statistical methods to find the

                      base forms of words. It comes integrated 

with the SpaCy NLP library.""")

print([token.lemma_ for token in sample_doc])

rule

[' ', 'the', 'SpaCy', 'lemmatizer', 'be', 'design', 'use', 'a', 

'combination', 'of', 'rule', '-', 'base', 'and', 'statistical', 

'method', '\n                     ', 'to', 'find', 'the', 

'base', 'form', 'of', 'word', '.', 'it', 'come', 'integrate', 

'with', 'the', 'SpaCy', 'NLP', 'library', '.']
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5.5.1.3  TextBlob Lemmatizer

TextBlob performs faster when compared to NLTK. It can be easily 

deployed with fewer computing resources. TextBlob is simpler to use, and 

it supports many functions that are not available in NLTK. Listing 5-3 is its 

code demo.

Listing 5-3. Program to Demonstrate TextBlob Lemmatizer

# First install TextBlob.

!pip install textblob

from textblob import TextBlob, Word

# Create sample text.

text = """ TextBlob performs faster when compared to nltk. It 

can be easily deployed with lesser computing resources.

          TextBlob is simpler to use and it supports many 

functions that are not available in nltk.

       """

# Create a TextBlob object.

blob = TextBlob(text)

# Tokenize the sample text.

words = blob.words

# Lemmatize.

lemmatized_words = [Word(word).lemmatize() for word in words]

# Print the output.

print("Original sample words:", words)

print("Lemmatized words:", lemmatized_words)

OUTPUT:

Original sample words: ['TextBlob', 'performs', 'faster', 

'when', 'compared', 'to', 'nltk', 'It', 'can', 'be', 'easily', 
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'deployed', 'with', 'lesser', 'computing', 'resources', 

'TextBlob', 'is', 'simpler', 'to', 'use', 'and', 'it', 

'supports', 'many', 'functions', 'that', 'are', 'not', 

'available', 'in', 'nltk']

Lemmatized words: ['TextBlob', 'performs', 'faster', 'when', 

'compared', 'to', 'nltk', 'It', 'can', 'be', 'easily', 

'deployed', 'with', 'lesser', 'computing', 'resource', 

'TextBlob', 'is', 'simpler', 'to', 'use', 'and', 'it', 

'support', 'many', 'function', 'that', 'are', 'not', 

'available', 'in', 'nltk']

5.6  A Complete Lexical Analysis 
with Data Preprocessing

You have already learned enough text preprocessing steps to tackle a 

complete text analysis problem. Next, we cover text preprocessing and 

predictive analytics. It’s a rather long problem.

As this is a long problem, please explain the steps you are taking and 

why something has to be done.

5.6.1  YouTube Comments Spam Detection

We solved the same problem in the Chapter 1 code demo. This time, we 

attempt to solve it here again with some data preprocessing steps and see if 

we get any improvements in results.

# Import the required libraries.

import pandas as pd

import numpy as np

# The below code is for working with machine learning model.

from sklearn import feature_extraction, linear_model, model_
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selection, preprocessing

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

# Ignore warnings.

import warnings

warnings.filterwarnings('ignore')

import re

import nltk

import spacy

import string

pd.options.mode.chained_assignment = None

# The below code is for working with machine learning model.

from sklearn import feature_extraction, linear_model, model_

selection, preprocessing

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

Let’s take a quick look at our data.

# Read the data files [1] available in the same folder as 

this code.

Youtube01_psy = pd.read_csv('Youtube01-Psy.csv')

Youtube02_katyperry = pd.read_csv('Youtube02-KatyPerry.csv')

Youtube03_lmfao = pd.read_csv('Youtube03-LMFAO.csv')

Youtube04_eminem = pd.read_csv('Youtube04-Eminem.csv')

Youtube05_shakira = pd.read_csv('Youtube05-Shakira.csv')

# ACombine all five datasets.

combined_df = pd.concat([Youtube01_psy, Youtube02_katyperry, 

Youtube03_lmfao, Youtube04_eminem, Youtube05_shakira])
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# Reset the index

combined_df.reset_index(drop=True, inplace=True)

combined_df.head(3)

                                    COMMENT_ID         AUTHOR  \

0  LZQPQhLyRh80UYxNuaDWhIGQYNQ96IuCg-AYWqNPjpU         Julius NM

1  LZQPQhLyRh_C2cTtd9MvFRJedxydaVW-2sNg5Diuo4A       adam riyati

2  LZQPQhLyRh9MSZYnf8djyk0gEF9BHDPYrrK-qCczIY8  Evgeny Murashkin

                   DATE                                    

    CONTENT  \

0  2013-11-07T06:20:48   Huh, anyway check out this you[tube] 

channel: ...

1  2013-11-07T12:37:15   Hey guys check out my new channel and 

our firs...

2  2013-11-08T17:34:21  just for test I have to say murdev.com

   CLASS

0      1

1      1

2      1

# Keep only the useful "CONTENT" and "CLASS" columns.

combined_df = combined_df[["CONTENT", "CLASS"]]

# Randomly select 5 rows

random_sample = combined_df.sample(n=5)

print(random_sample)

                                                CONTENT  CLASS

1127  The best Song i saw ... 0

599   Hey Katycats! We are releasing a movie at midn...      1

574   want to win borderlands the pre-sequel? check ...      1

533   Awesome video this is one of my favorite  song...      0

747             Love this video and the song of course       0
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• Note the special characters and misalignment due to 

spaces in CLASS

# Randomly select 5 rows

random_sample = combined_df.sample(n=5)

print(random_sample)

                                                CONTENT  CLASS

532   http://www.googleadservices.com/pagead/aclk?sa...      1

1447            I love this song sooooooooooooooo much       0

1901  Hey youtubers... I really appreciate all of yo...      1

268   https://www.facebook.com/pages/Mathster-WP/149...      1

1304  sorry but eminmem is a worthless wife beating ...      0

5.6.2  Convert the Text to Lowercase

# Convert all comments to string type for further processing.

combined_df["CONTENT"] = combined_df["CONTENT"].astype(str)

# Convert everything in to lower case.

combined_df["text_lower_case"] = combined_df["CONTENT"].

str.lower()

# Randomly select 3 rows.

random_sample_lower = combined_df.sample(n=3)

print(random_sample_lower)

                                              CONTENT  CLASS  \

404  YAY IM THE 11TH COMMENTER!!!!!                ...      1

907               Check out this playlist on YouTube:       1

942  View 851.247.920<br /><br /> Best youtube Vide...      1

                                       text_lower_case

404  yay im the 11th commenter!!!!!                ...
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907               check out this playlist on youtube:

942  view 851.247.920<br /><br /> best youtube vide...

# Drop ombined_df["CONTENT"] as we will work only with 

combined_df["text_lower_case"].

# The punctuations present are - !"#$%&\'()*+,-./:;<=>?@

[\\]^_{|}~`

# combined_df = combined_df.drop(columns=["CONTENT"])

combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case'], dtype='object')

5.6.3  Remove All Unwanted Punctuation

# Punctuation to remove

punctuation_to_remove = "!\"#$%&\'()*+,-./:;<=>?@[\\]^_{|}~`"

# Remove the above punctuations from the # Remove the above 

punctuations from the "text_lower_case" column.

combined_df["text_lower_case"] = combined_df["text_lower_

case"].str.translate(str.maketrans('', '', punctuation_to_

remove))

# Randomly select 10 rows.

random_sample_lower = combined_df.sample(n=10)

print(random_sample_lower)

                                               CONTENT CLASS \

173                     http://www.gofundme.com/gvr7xg       1

277   Hey, join me on tsū, a publishing platform whe...      1

1828                          Shakira is very beautiful      0

25    marketglory . com/strategygame/andrijamatf ear...      1

580   Thank you KatyPerryVevo for your instagram lik...      1

1240  all u should go check out j rants vi about eminem      1

1788              Please visit this Website: oldchat.tk      1

962    <br />Please help me get 100 subscribers by t...      1
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1857                                            Love it      0

301   http://hackfbaccountlive.com/?ref=4436607  psy...      1

                                        text_lower_case

173                           httpwwwgofundmecomgvr7xg

277   hey join me on tsū a publishing platform where...

1828                          shakira is very beautiful

25    marketglory  comstrategygameandrijamatf earn r...

580   thank you katyperryvevo for your instagram lik...

1240  all u should go check out j rants vi about eminem

1788                please visit this website oldchattk

962    br please help me get 100 subscribers by the ...

1857                                            love it

301   httphackfbaccountlivecomref4436607  psy news o...

5.6.4  Remove Stop Words

import nltk

from nltk.corpus import stopwords

# Download the stopwords if you haven't already

nltk.download('stopwords')

# Get the list of English stopwords

stop_words = set(stopwords.words('english'))

[nltk_data] Downloading package stopwords to C:\Users\

Shailendra

[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package stopwords is already up-to-date!

combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case'], dtype='object')

# Remove stopwords from the "text_lower_case" column
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combined_df["text_lower_case"] = combined_df["text_lower_

case"].apply(lambda x: ' '.join([word for word in x.split() if 

word not in stop_words]))

# Randomly select 5 rows.

random_sample_lower = combined_df.sample(n=5)

print(random_sample_lower)

                                                CONTENT CLASS \

1025  <a href="https://m.freemyapps.com/share/url/10...       1

181                         Please check out my vidios        1

724   This awesome song needed 4 years to reach to 8...       0

1296  5 years and i still dont get the music video h...       0

878                                                omg        0

                                        text_lower_case

1025  hrefhttpsmfreemyappscomshareurl10b35481httpsmf...

181                                please check vidios

724   awesome song needed 4 years reach 800 mil view...

1296   5 years still dont get music video help someone

878                                                omg

The frequent or rare word removal is based on the specific goals of 

your NLP task and the nature of the dataset in hand. Frequent words are 

removed because of their minimal informational value. Removing frequent 

and rare words helps to reduce noise in the data and allows focus on more 

meaningful words. It improves the performance of several NLP algorithms 

as they can now focus on content-rich words that contribute to the 

overall analysis. Rare words are particularly removed as they have limited 

relevance.

Next, let’s look at code on how to remove frequent and rare words.
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5.6.5  Remove Frequent Words

from collections import Counter

# Combine all text into a single string and split into 

individual words.

all_words = ' '.join(combined_df["text_lower_case"]).split()

# Count the frequency of every word.

word_counts = Counter(all_words)

# Determine the threshold for frequent words (top 10 most 

 common words).

most_common_words = word_counts.most_common(10)

# Print the frequent words with their frequencies.

print("Frequent words with their frequencies:")

for word, count in most_common_words:

    print(f"{word}: {count}")

# Set of the frequent words.

frequent_words = {word for word, count in most_common_words}

# Remove frequent words from the combined_df["text_

lower_case"].

combined_df["frequent_removed"] = combined_df["text_lower_

case"].apply(

     lambda x: ' '.join([word for word in x.split() if word not 

in frequent_words])

)

Frequent words with their frequencies:

check: 559

video: 294

: 267

like: 235
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please: 231

song: 231

subscribe: 209

love: 189

channel: 173

music: 144

combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case', 'frequent_

removed'], dtype='object')

# Randomly select 5 rows.

random_sample_lower = combined_df[['CLASS', 'frequent_

removed']].sample(n=5)

print(random_sample_lower)

      CLASS                                   frequent_removed

1939      1  peoples earth seen perform every form evil lei...

459       0  comment randomly get lots likes replies reason...

896       0                       almost 1 billion views nice

1799      0                                      she39s pretty

1426      0                charlieee dddd saw lost understand

5.6.6  Remove Rare Words

from collections import Counter

# Combine all text into a single string and split into 

individual words.

all_words = ' '.join(combined_df["text_lower_case"]).split()

# Count the frequency of every word.

word_counts = Counter(all_words)

# Define the threshold for rare words.

threshold = 5
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rare_words = {word: count for word, count in word_counts.

items() if count < threshold}

# Sort the rare words by frequency in ascending order and keep 

the top 5.

sorted_rare_words = sorted(rare_words.items(), key=lambda item: 

item[1])

top_5_rare_words = sorted_rare_words[:5]

# Print the top 5 rare words with their frequencies.

print("Top 5 rare words with their frequencies:")

for word, count in top_5_rare_words:

    print(f"{word}: {count}")

# Remove rare words from combined_df["text_lower_case"].

combined_df["rare_removed"] = combined_df["text_lower_

case"].apply(

     lambda x: ' '.join([word for word in x.split() if word not 

in rare_words])

)

Top 5 rare words with their frequencies:

anyway: 1

kobyoshi02: 1

monkeys: 1

shirtplease: 1

test: 1

• All the removed rare words are not displayed here as 

the list is very long.

combined_df.columns

Index(['CLASS', 'text_lower_case', 'frequent_removed', 

'rare_removed'], dtype='object')
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# Randomly select 5 rows.

random_sample_lower = combined_df[['CLASS', 'lower_

removed']].sample(n=5)

print(random_sample_lower)

 CLASS                                   lower_removed

1455 0                                              so

1787 1                       please visit this website

35   0  why is a korean song so big in the does that m...

1622 1                 check out this video on youtube

1386 0                                           

Next, let’s apply stemming and lemmatization directly to combined_

df[“text_lower_case”] because they are necessary steps.

5.6.7  Stemming

import nltk

from nltk.stem import PorterStemmer

from collections import Counter

# Ensure that the necessary NLTK resources are available

nltk.download('punkt')

# Initialize the Porter Stemmer

stemmer = PorterStemmer()

# Function to stem words in a text and return the 

stemmed version

def stem_text(text):

    words = text.split()

    stemmed_words = [stemmer.stem(word) for word in words]

    return ' '.join(stemmed_words)

[nltk_data] Downloading package punkt to C:\Users\Shailendra
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[nltk_data]     Kadre\AppData\Roaming\nltk_data...

[nltk_data]   Package punkt is already up-to-date!

# Apply stemming to tcombined_df["text_lower_case"].

combined_df["text_lower_case"] = combined_df["text_lower_

case"].apply(stem_text)

# Combine all stemmed text into a single string and split into 

individual words

all_stemmed_words = ' '.join(combined_df["text_lower_

case"]).split()

# Count the frequency of every stemmed word

word_counts = Counter(all_stemmed_words)

# Get the top 5 stemmed words and their frequencies

top_5_stemmed_words = word_counts.most_common(5)

# Create a mapping from stemmed words to their original 

base forms

base_form_mapping = {}

for text in combined_df["text_lower_case"]:

    words = text.split()

    for word in words:

        stemmed_word = stemmer.stem(word)

        if stemmed_word not in base_form_mapping:

            base_form_mapping[stemmed_word] = set()

        base_form_mapping[stemmed_word].add(word)

# Display the top 5 stemmed words with their original 

base forms

print("Top 5 stemmed words with their original base forms:")

for stemmed_word, count in top_5_stemmed_words:

    base_forms = base_form_mapping.get(stemmed_word, [])

    base_form_display = ', '.join(base_forms)  # Display unique 

base forms
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    print(f"Stemmed Word: {stemmed_word}, Count: {count}, 

Original Words: {base_form_display}")

Top 5 stemmed words with their original base forms:

Stemmed Word: check, Count: 568, Original Words: check

Stemmed Word: video, Count: 361, Original Words: video

Stemmed Word: song, Count: 274, Original Words: song

Stemmed Word: , Count: 267, Original Words: 

Stemmed Word: like, Count: 256, Original Words: like

combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case', 'frequent_

removed',

       'rare_removed'],

      dtype='object')

combined_df[['CLASS', 'text_lower_case']].head(10)

   CLASS                                    text_lower_case

0      1         huh anyway check youtub channel kobyoshi02

1      1  hey guy check new channel first vid us monkey ...

2      1                                 test say murdevcom

3      1                     shake sexi ass channel enjoy 

4      1                          watchvvtarggvgtwq check 

5      1  hey check new websit site kid stuff kidsmediau...

6      1                                 subscrib channel 

7      0              turn mute soon came want check views

8      1                        check channel funni videos

9      1                 u shouldd check channel tell next

# Randomly select 5 stemmed rows.

random_sample = combined_df[['CLASS', 'text_lower_case']].

sample(n=5)

print(random_sample)

      CLASS                                    text_lower_case

1749      1            brazil pleas subscrib channel love all
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602       0                           song never get old lt3 

1329      1  guy check extraordinari websit call zonepacom ...

1791      1  hello guysi found way make money onlin get pai...

1479      0                                  anybodi els 2015

5.6.8  Lemmatization

We can perform lemmatization in two ways.

• Without POS tagging: It is less accurate as this way, the 

lemmatizer often assumes that words are nouns, which 

can lead to potential errors.

• With POS tagging: It is more accurate as it takes 

the word’s role in the sentence into account while 

performing lemmatization. Taking POS tags in to 

account reduces the likelihood of errors.

The following code focuses on the second process. A note on the 

coding approach: POS tags from NLTK are more detailed compared to the 

broader ones from WordNet. NLTK’s POS tagger provides the necessary 

contextual information. Converting NLTK’s detailed tags to WordNet’s 

simpler POS tags ensures that the lemmatizer has the necessary context.

import nltk

from nltk.corpus import wordnet

from nltk.stem import WordNetLemmatizer

from nltk import pos_tag, word_tokenize

# Convert NLTK POS tags to WordNet POS tags as explained above.

def get_wordnet_pos(treebank_tag):

    if treebank_tag.startswith('J'):

        return wordnet.ADJ
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    elif treebank_tag.startswith('V'):

        return wordnet.VERB

    elif treebank_tag.startswith('N'):

        return wordnet.NOUN

    elif treebank_tag.startswith('R'):

        return wordnet.ADV

    else:

        return wordnet.NOUN  # Assume nounun if no match 

is found.

# Test on sample text.

text = """Note on the approach of coding: POS tags from NLTK's 

are more detailed

           compared to the broader ones from WordNet. NLTK's POS 

tagger provides the necessary contextual information.

          Converting NLTK's detailed tags to WordNet' simpler s

           POS tags ensures that the lemmatizer has the 

necessary context.

"""

# Tokenize and find the POS tags.

tokens = word_tokenize(text)

pos_tags = pos_tag(tokens)

# Initialize the lemmatizer.

lemmatizer = WordNetLemmatizer()

# Lemmatize with POS tags

lemmatized_words = [lemmatizer.lemmatize(token, get_wordnet_

pos(pos)) for token, pos in pos_tags]

print(lemmatized_words)

['Note', 'on', 'the', 'approach', 'of', 'coding', ':', 'POS', 

'tag', 'from', 'NLTK', '’', 's', 'be', 'more', 'detailed', 
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'compare', 'to', 'the', 'broad', 'one', 'from', 'WordNet', 

'.', 'NLTK', '’', 's', 'POS', 'tagger', 'provide', 'the', 

'necessary', 'contextual', 'information', '.', 'Converting', 

'NLTK', '’', 's', 'detail', 'tag', 'to', 'WordNet', "'s", 

'simpler', 'POS', 'tag', 'ensure', 'that', 'the', 'lemmatizer', 

'have', 'the', 'necessary', 'context', '.']

combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case', 'frequent_

removed', 'rare_removed'], dtype='object')

# We will aplly the lemmatize diectly on combined_df['text_

lower_case'] as its a necessary step in our case.

# First write a function to lemmatize text.

def lemmatize_text(text):

    tokens = word_tokenize(text)

    pos_tags = pos_tag(tokens)

     lemmatized_tokens = [lemmatizer.lemmatize(token, get_

wordnet_pos(pos)) for token, pos in pos_tags]

    return ' '.join(lemmatized_tokens)

# Apply the lemmatization function directly to combined_

df['text_lower_case'].

combined_df['text_lower_case'] = combined_df['text_lower_

case'].apply(lemmatize_text)

# Display the DataFrame with the new lemmatized column

print(combined_df[['CLASS','text_lower_case']])

      CLASS                                    text_lower_case

0         1         huh anyway check youtub channel kobyoshi02

1         1  hey guy check new channel first vid u monkey i...

2         1                                 test say murdevcom

3         1                      shake sexi as channel enjoy 
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4         1                          watchvvtarggvgtwq check 

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two reason 1it africa 2i born beauti...

1953      0                                                wow

1954      0                                   shakira u wiredo

1955      0                                shakira best dancer

[1956 rows x 2 columns]

We are still left with the following text preprocessing processes that we 

directly apply to our main text column, combined_df[‘text_lower_case’].

• Removal of emojis

• Removal of emoticons

• Conversion of emoticons to words

• Conversion of emojis to words

• Removal of URLs

• Removal of HTML tags

• Chat words conversion

• Spelling correction

Let’s examine each.

5.6.9  Removal of Emojis

In text preprocessing, we need to remove emojis to simplify text data. 

Removing emojis lets models focus on the most relevant content. 

Removing emojis helps us to standardize the input data and makes it more 

uniform and easier to process.
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# We will use regular expressions to remove emojis directly 

from combined_df['text_lower_case'].

import pandas as pd

import re

# Function to remove emojis

def remove_emojis(text):

    emoji_pattern = re.compile(

        "["

        u"\U0001F600-\U0001F64F"  # Emoticons

        u"\U0001F300-\U0001F5FF"  # Symbols & Pictographs

        u"\U0001F680-\U0001F6FF"  # Transport & Map Symbols

        u"\U0001F1E0-\U0001F1FF"  # Flags (iOS)

        u"\U00002702-\U000027B0"  # Miscellaneous Symbols

        u"\U000024C2-\U0001F251"  # Enclosed Characters

        "]+", flags=re.UNICODE)

    return emoji_pattern.sub(r'', text)

# Apply the function diectly to combined_df['text_lower_case'].

combined_df['emojis_removed'] = combined_df['text_lower_case'].

apply(remove_emojis)

# Pring the output.

print(combined_df[['CLASS','emojis_removed']])

      CLASS                                     emojis_removed

0         1         huh anyway check youtub channel kobyoshi02

1         1  hey guy check new channel first vid u monkey i...

2         1                                 test say murdevcom

3         1                       shake sexi as channel enjoy

4         1                           watchvvtarggvgtwq check

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two reason 1it africa 2i born beauti...
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1953      0                                                wow

1954      0                                   shakira u wiredo

1955      0                                shakira best dancer

[1956 rows x 2 columns]

combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case', 'frequent_removed',

      'rare_removed', 'emojis_removed'], dtype='object')

5.6.10  Removal of Emoticons

You might be wondering the difference between emojis and emoticons. 

Emojis are colorful, digital icons like  (smiling face) or  (rocket). They 

stand for objects or emotions. While emoticons are text-based symbols like 

:-) (smiley face) or <3 (heart). Emoticons are created with keyboard 

characters to express feelings.

import re

# Apply RegEx to remove emoticons. Write a function first.

def remove_emoticons(text):

    # RegEx pattern to match commonly used emoticons.

    emoticon_pattern = re.compile(

        r'[:;=8][\-o\*]?[)\]\(\[dDpP\||/\\\^]',

        re.UNICODE)

    return emoticon_pattern.sub(r'', text)

# Sample sentence with emoticons.

sample_sentence = "Hello John! :) How are you? :P I hope you're 

good today. :D"
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# Remove emoticons from the sample sentence

emoticons_removed = remove_emoticons(sample_sentence)

# Print the result

print("Original Sentence:", sample_sentence)

print("Cleaned Sentence:", emoticons_removed)

Original Sentence: Hello John! :) How are you? :P I hope you're 

good today. :D

Cleaned Sentence: Hello John!  How are you?  I hope you're 

good today.

# Apply the function to the combined_df['text_lower_case']. We 

will store it in another column for now.

combined_df['emoticons_removed'] = combined_df['text_lower_

case'].apply(remove_emoticons)

# Print the output.

print(combined_df[['CLASS','emoticons_removed']])

      CLASS                                  emoticons_removed

0         1         huh anyway check youtub channel kobyoshi02

1         1  hey guy check new channel first vid u monkey i...

2         1                                 test say murdevcom

3         1                      shake sexi as channel enjoy 

4         1                          watchvvtarggvgtwq check 

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two reason 1it africa 2i born beauti...

1953      0                                                wow

1954      0                                   shakira u wiredo

1955      0                                shakira best dancer

[1956 rows x 2 columns]
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combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case', 'frequent_removed',

       'rare_removed', 'emojis_removed', 'emoticons_removed'],

      dtype='object')

5.6.10.1  Converting Emoticons to Words

We can map emoticons to their corresponding descriptions, like “smiley 

face” or “grinning face.” This conversion helps preserve the sentiments 

conveyed by emoticons in the form of simple text words, which are easier 

to analyze compared to plain emoticons. It helps improve the accuracy 

and effectiveness of NLP tasks.

# Map the common emoticons to words.

emoticon_to_word = {

    ':)': 'smiley face',

    ':D': 'grinning face',

    ':P': 'playful face',

    ':-)': 'smiley face',

    ':-D': 'grinning face',

    ':-P': 'playful face'

}

# Function to replace emoticons with words.

def emoticons_to_word_converter(text):

    for emoticon, word in emoticon_to_word.items():

        text = text.replace(emoticon, word)

    return text

# Sample sentence.

sample_sentence = "Hello there! :) How are you? :P I hope 

you're doing well. :D"
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# Convert emoticons to words.

converted_sentence = emoticons_to_word_converter(sample_sentence)

# Print the output.

print("Original Sentence:", sample_sentence)

print("Converted Sentence:", converted_sentence)

Original Sentence: Hello there! :) How are you? :P I hope 

you're doing well. :D

Converted Sentence: Hello there! smiley face How are you? 

playful face I hope you're doing well. grinning face

# Apply the function directly on combined_df['text_lower_case']

# Its likely to be useful in increasing the accuracy of our 

analysis.

# Apply the function to the 'text_lower_case' column

combined_df['text_lower_case'] = combined_df['text_lower_

case'].apply(convert_emoticons_to_words)

# Print the output.

print(combined_df[['CLASS', 'text_lower_case']])

      CLASS                                    text_lower_case

0         1         huh anyway check youtub channel kobyoshi02

1         1  hey guy check new channel first vid u monkey i...

2         1                                 test say murdevcom

3         1                      shake sexi as channel enjoy 

4         1                          watchvvtarggvgtwq check 

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two reason 1it africa 2i born beauti...

1953      0                                                wow

1954      0                                   shakira u wiredo

1955      0                                shakira best dancer

[1956 rows x 2 columns]
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5.6.10.2  Conversion of Emojis to Words

# Install emoji if you have not done it earlier.

!pip install emoji # it is the necessarylibrary.

Collecting emoji

  Downloading emoji-2.12.1-py3-none-any.whl (431 kB)

                             0.0/431.4 kB ? eta -:--:--

   -------                  81.9/431.4 kB 2.3 MB/s eta 0:00:01

   ----------------------  256.0/431.4 kB 3.2 MB/s eta 0:00:01

   ----------------------- 431.4/431.4 kB 3.4 MB/s eta 0:00:00

Requirement already satisfied: typing-extensions>=4.7.0 in c:\

users\shailendra kadre\anaconda3\lib\site-packages (from emoji) 

(4.12.2)

Installing collected packages: emoji

Successfully installed emoji-2.12.1

import emoji

# Map of emojis to words.

def emojis_to_word_converer(text):

    # Convert emojis to their corresponding descriptions.

    return emoji.demojize(text)

# Example usage

sample_text = "Hello John!  How are you?  I hope you're good 

today. "

converted_text = emojis_to_word_converer(sample_text)

print("Original Text:", sample_text)

print("Converted Text:", converted_text)

Original Text: Hello John!  How are you?  I hope you're good 

today. 

Converted Text: Hello John! :smiling_face_with_smiling_eyes: 

How are you? :rocket: I hope you're good today. :party_popper:

# Apply the function to combined_df['text_lower_case'].
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combined_df['text_lower_case'] = combined_df['text_lower_

case'].apply(emojis_to_word_converer)

# Print the output.

print(combined_df[['CLASS', 'text_lower_case']])

      CLASS                                    text_lower_case

0         1         huh anyway check youtub channel kobyoshi02

1         1  hey guy check new channel first vid u monkey i...

2         1                                 test say murdevcom

3         1                      shake sexi as channel enjoy 

4         1                          watchvvtarggvgtwq check 

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two reason 1it africa 2i born beauti...

1953      0                                                wow

1954      0                                   shakira u wiredo

1955      0                                shakira best dancer

[1956 rows x 2 columns]

5.6.11  Removal of URLs

URLs are noise and irrelevant information for any text analysis. Removing 

URLs standardizes and cleans the input data.

import re

# Let's write a function to remove URLs from the input text.

def url_remover(text):

    url_pattern = re.compile(r'http[s]?://\S+|www\.\S+')

    return url_pattern.sub('', text)

# Sample usage below.

sample_text = "Check out this link: https://www.example.com and 

also visit http://example.org."
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cleaned_text = url_remover(sample_text)

print("Original Text:", sample_text)

print("Cleaned Text:", cleaned_text)

Original Text: Check out this link: https://www.example.com and 

also visit http://example.org.

Cleaned Text: Check out this link:  and also visit

# Apply the function to combined_df['text_lower_case'].

combined_df['text_lower_case'] = combined_df['text_lower_

case'].apply(url_remover)

# Print the output.

print(combined_df[['CLASS','text_lower_case']])

      CLASS                                    text_lower_case

0         1         huh anyway check youtub channel kobyoshi02

1         1  hey guy check new channel first vid u monkey i...

2         1                                 test say murdevcom

3         1                      shake sexi as channel enjoy 

4         1                          watchvvtarggvgtwq check 

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two reason 1it africa 2i born beauti...

1953      0                                                wow

1954      0                                   shakira u wiredo

1955      0                                shakira best dancer

[1956 rows x 2 columns]

5.6.12  Removal of HTML tags

HTML tags may pose as noise and irrelevant data in most text analysis. 

Removing them can improve the accuracy of our text analysis.
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import re

# A simple function to remove HTML tags from the input text.

def html_tag_remover(text):

    html_tag_pattern = re.compile(r'<[^>]+>')

    return html_tag_pattern.sub('', text)

# Sample usage.

sample_text = "<p>Hi John! <a href='https://example_url.

com'>Click here</a> to visit.</p>"

cleaned_text = html_tag_remover(sample_text)

print("Original Text:", sample_text)

print("Cleaned Text:", cleaned_text)

Original Text: <p>Hi John! <a href='https://example_url.

com'>Click here</a> to visit.</p>

Cleaned Text: Hi John! Click here to visit.

# Apply the function to combined_df['text_lower_case'].

combined_df['text_lower_case'] = combined_df['text_lower_

case'].apply(html_tag_remover)

# Print the output.

print(combined_df[['CLASS','text_lower_case']])

      CLASS                                    text_lower_case

0         1         huh anyway check youtub channel kobyoshi02

1         1  hey guy check new channel first vid u monkey i...

2         1                                 test say murdevcom

3         1                      shake sexi as channel enjoy 

4         1                          watchvvtarggvgtwq check 

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two reason 1it africa 2i born beauti...

1953      0                                                wow
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1954      0                                   shakira u wiredo

1955      0                                shakira best dancer

[1956 rows x 2 columns]

5.6.13  Chat Words Conversion

Chat words are informal, abbreviated, or slang terms that are popularly 

used in online messaging, especially by the younger generation. The 

examples include “u” for “you” or “lol” for “laughing out loud.” Converting 

chat words into more formal language words can help in accurately 

analyzing them by text processing models.

# Map common chat words to more formal words. You can add on to 

this list.

chat_to_formal = {

    'u': 'you',

    'r': 'are',

    'lol': 'laughing out loud',

    'brb': 'be right back',

    'ttyl': 'talk to you later',

    'thx': 'thanks',

    'gtg': 'got to go',

    'b4': 'before'

}

# Let's now write a function to replace chat words with 

formal words.

def chat_word_converter(text):

    for chat_word, formal_word in chat_to_formal.items():

        text = text.replace(chat_word, formal_word)

    return text
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# Sample usage.

sample_text = "Hey John! r u coming to the function this 

evening? lol, thx for your invite!"

converted_text = chat_word_converter(sample_text)

print("Original Text:", sample_text)

print("Converted Text:", converted_text)

Original Text: Hey John! r u coming to the function this 

evening? lol, thx for your invite!

Converted Text: Hey John! are you coming to the fyounction this 

evening? laughing out loud, thanks foare yoyouare invite!

# Apply the function to combined_df['text_lower_case'].

combined_df['text_lower_case'] = combined_df['text_lower_

case'].apply(chat_word_converter)

# Print the output.

print(combined_df[['CLASS','text_lower_case']])

      CLASS                                    text_lower_case

0         1   hyouh anyway check yoyoutyoub channel kobyoshi02

1         1  hey gyouy check new channel fiarest vid you mo...

2         1                             test say myouaredevcom

3         1                      shake sexi as channel enjoy 

4         1                        watchvvtaareggvgtwq check 

...     ...                                                ...

1951      0                           love song sing camp time

1952      0  love song two areeason 1it afareica 2i boaren ...

1953      0                                                wow

1954      0                             shakiarea you wiareedo

1955      0                            shakiarea best danceare

[1956 rows x 2 columns]
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5.6.14  Spelling Corrections

Spelling correction increases information gain and helps with accurate 

analysis of the input text.

!pip install SpellChecker # Necesary library.

!pip install indexer # Another necesary library.

!pip install pyspellchecker # Another necesary library.

from spellchecker import SpellChecker

import pandas as pd

# Initialize the spell checker

spell = SpellChecker()

# Function to correct spelling in text

def spelling_corrector(text):

    words = text.split()  # Split the text into words

    corrected_words = [spell.candidates(word).pop() if spell.

candidates(word) else word for word in words]

    return ' '.join(corrected_words)

# Sample usage.

sample_text = """We havv few speling mistkes in this short 

paragraph.',

                            'Anothr exampl with spellig erors.',

                            'No spellig errors here!

               """

converted_text = spelling_corrector(sample_text)

print("Original Text:", sample_text)

print("Converted Text:", converted_text)

Original Text: I havv a speling mistke in this sentnce.',

                             'Anothr exampl with spellig 

erors.',

                            'No spellig errors here!
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Converted Text: I have a spieling mistake in this sentnce.', 

another example with spelling erors.', no spelling errors heres

# Apply the function to combined_df['text_lower_case'].

combined_df['text_lower_case'] =  combined_df['text_lower_

case'].apply(spelling_corrector)

# Print the output.

print(combined_df[['CLASS','text_lower_case']])

Note Applying the spelling_corrector function to the combined_

df[‘text_lower_case’] was taking a long time. So, I aborted the kernel. 

You can try it on a more powerful machine or in the cloud. We also 

tried TextBlob, but it took a lot of time.

combined_df.columns

Index(['CONTENT', 'CLASS', 'text_lower_case', 'frequent_removed',

       'rare_removed', 'emojis_removed', 'emoticons_removed'],

      dtype='object')

• The useful columns for further processing are ‘CLASS’ 

and ‘text_lower_case’. All others are for demo. You can 

use their code in your projects depending on what type 

of text analysis you are trying to do.
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5.6.15  Apply Machine Learning Model

Listing 5-4 is similar to what you saw in Chapter 1.

Lisitng 5-4. Code Demonstration of Applying Machine 

Learning Model

# Seperate features and the target.

X = np.array(combined_df['text_lower_case'])

y = np.array(combined_df['CLASS'])

count_vectorizer = feature_extraction.text.CountVectorizer()  

# Instrantiate CountVectorizer()

X.shape

(1956,)

# Split in to train and test datasets.

X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size=0.3, random_state=42)

# We will use count_vectorizer.fit_transform() for X_train 

and X_test.

X_train = count_vectorizer.fit_transform(X_train)

X_test = count_vectorizer.transform(X_test) # We will do onlt 

transform() with X_test.

# Initialize the Random Forest model

clf = RandomForestClassifier(n_estimators=100, random_state=42)

scores = model_selection.cross_val_score(clf, X_train, y_train, 

cv=3, scoring="f1")

scores

array([0.87470449, 0.9044289 , 0.90487239])
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Note Surprisingly, we got considerably better accuracies in  

Chapter 1, in which minimal preprocessing was done. Looks like 

there is a considerable loss of information in these preprocessing 

steps. It’s an interesting lesson for all of us. With text preprocessing, 

the results are expected to improve in the normal course. It can 

happen only if the right and only the necessary steps are applied 

while preprocessing. Overly preprocessing data can cause it to lose 

the information, and it can lead to poor results.

clf.fit(X_train, y_train) # Fit the model.

RandomForestClassifier(random_state=42)

# Make predictions with the test data.

y_pred = clf.predict(X_test)

# Construct a dataframe with columns as y_test and y_pred.

test_df = pd.DataFrame()

test_df["y"] = y_test

test_df["y_predict"] = y_pred

# Display 10 random rows from test_df

random_sample = test_df.sample(n=10)

print(random_sample)

     y  y_predict

9    1          1

218  1          1

3    1          1

362  1          1

291  1          1

174  0          0

99   1          1
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357  0          0

531  0          0

294  1          1

• The ground truth, y_test, compares well with the 

predictions.

5.7  Chapter Recap

As we conclude this rather long chapter, with many interesting concepts 

and hands-on techniques to grasp, let’s spend a moment revisiting the key 

concepts and techniques that we have explored so far.

We began with morphological analysis and tokenization, where we 

probed into multiple tokenization techniques, including whitespace and 

MWE tokenizers. We also presented hands-on code demos for each. These 

code snippets and functions you can directly adapt for your NLP projects. 

This is true for all the code demos included in this book. We then delved 

into the fundamental building stones of text analysis, stemming, and 

lemmatization. Here also, our code demos involved important Python 

libraries for text processing like NLTK’s WordNet, spaCy, and TextBlob. 

Finally, we stitched together everything in a comprehensive lexical 

analysis with data preprocessing and predictive analysis project using 

YouTube Comments spam detection.

Lexical analysis is faced with several challenges that include 

complexities of natural language, diverse language structures, and 

evolving language patterns. Handling ambiguous words with multiple 

context- dependent meanings is especially difficult to handle and interpret. 

This uncertainty frequently leads to errors in the tasks like POS tagging. 

However, modern language models are able to resolve it up to a large 

extent. Another challenge is posed by a variety of language structures and 
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the evolving nature of natural languages, including slang, idioms, domain- 

specific jargon, and evolving language patterns in digital communication 

with the constant evolution of new words and phrases. New sophisticated 

models are required to better handle these complex linguistic patterns. 

Researchers are working on newer models for real-time lexical analyzers 

and the development of better tools for multilingual and cross-domain text 

processing.

As you read further through this book, keep in mind that the 

foundational concepts and tools learned in this chapter are pivotal for 

mastering advanced NLP applications. Whether you are building a simple 

spam filter, working on a sentiment analysis model, or working on any 

other advanced NLP project, the techniques and concepts that you have 

learned in this chapter can act as your pivotal toolkit.
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CHAPTER 6

Syntactic and 
Semantic Techniques 
in NLP

6.1  Why You Should Read This Chapter

This chapter introduces some foundational concepts in syntactic analysis, 

like breaking down and analyzing sentence structures. Understanding 

these concepts is critical for advancing your skills in NLP. Knowledge 

of part-of-speech (POS) tagging and parsing techniques will help you 

in building better NLP models. POS tagging is an essential skill for 

constructing chatbots, search engine optimization (SEO), and machine 

translation. This chapter is full of practical examples, including a full- 

length solved tutorial to provide you with hands-on skills in this art. Skills 

in syntactic analysis enhance NLP systems, enabling them to grasp the 

basic structure of language, resulting in more nuanced and contextually 

accurate responses in applications such as virtual assistants and customer 

service chatbots.

https://doi.org/10.1007/979-8-8688-1582-9_6#DOI
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Additionally, the skills learned in this chapter will prepare you to 

adapt and innovate with the latest developments in the NLP field. Before 

we take a deep dive into the topics of syntactic and semantic analysis, it is 

beneficial to formally understand them in simple words and comprehend 

the relationship between them. Finally, this section explains why you 

should master these topics.

Syntactic and semantic analysis are vital components of NLP. The main 

thrust of syntactic analysis is on the grammatical structure of sentences 

to make sure they follow the prescribed rules of syntax. The syntactic 

analysis breaks down the input sentences into fragments, such as phrases 

and clauses, and signifies their hierarchical relationships by utilizing 

structures like parse trees. For example, the sentence “The dog barked 

loudly” classifies “The dog” as a noun phrase and “barked loudly” as a verb 

phrase. It helps NLP application to comprehend how words (in a given 

sentence) relate to each other structurally. Syntactic analysis is crucial for 

NLP tasks, such as grammar checking, sentence parsing, and transforming 

unstructured text into a format that machines can read and understand.

Semantic analysis, on the other hand, explores the proper meaning 

of words, phrases, and sentences of the input text. This technique infers 

relations between words and resolves uncertainties in the meaning of 

the same words in different contexts. For example, the word “bank” 

can have different meanings as a financial institution or as the edge of 

a river. Semantic analysis also explores the logical representations of 

text. Semantic analysis techniques, such as word sense disambiguation 

(WSD), named entity recognition, and semantic role labeling, enable NLP 

applications to extract the meanings of words and phrases within their 

specific contexts. For instance, semantic analysis techniques can explain 

whether “Flying planes can be dangerous” denotes the act of flying planes 

or the planes (as machines) themselves as risky. Semantic analysis is 

critical for NLP systems such as social media or email sentiment analysis, 

question-answering chatbots, and machine translation from one language 

to another.
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Syntactic and semantic analysis techniques are complementary 

to each other. The first ensures grammatical accuracy and structural 

consistency. The second (semantic analysis), on the other hand, ensures 

meaningful interpretation of words, phrases, and sentences in any given 

input text in NLP applications. A syntactically binding sentence might still 

be ambiguous from the semantic angle without proper context. When used 

together, both of these techniques enhance the precision and correctness 

of NLP applications. The correct application of both these techniques 

ensures proper structural correctness with proper contextual meaning.

Learning both these topics is critical for anyone working with NLP 

systems. These techniques form the backbone of language applications, 

which require grammatical correctness and proper contextual 

understanding. A proper understanding of syntactic and semantic 

techniques can help you in designing robust language models that are 

capable of parsing text accurately, along with proper interpretation of 

contextual meaning. This knowledge is crucial for developing cutting-edge 

AI systems, such as advanced domain-specific chatbots, virtual assistants 

like Alexa, and automated text summarization applications that can interact 

seamlessly with human languages, including English, German, and Hindi.

6.2  An Overview of Structural Techniques

Key concepts covered in the chapter, such as POS tagging, parsing, and 

syntax trees, are fundamental to understanding the structure and meaning 

of sentences. POS tagging finds the role of each word in a sentence. It 

enables a more accurate interpretation of text that is critical in many NLP 

tasks, such as grammar correction.

Parsing techniques such as dependency and constituency parsing 

enable the breaking down of sentences into their respective grammatical 

components. It facilitates a more precise analysis of word relationships, 

which is crucial for accurately extracting information from input text.
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Syntax trees are a visual way to represent sentence structures. 

They provide a clear overview of how words are organized in any input 

sentence. Syntax trees are helpful in text processing tasks, such as syntactic 

parsing, which enhances the effectiveness and reliability of NLP models 

in real-world scenarios, including question-answering systems, text 

summarization, and speech recognition.

Our discussion in this section would not be complete without taking 

a couple of business or industry applications in this context. Let’s case 

the real-time application like machine translation: syntactic analysis is 

useful here to accurately parse the input sentences in the source language 

to identify the underlying grammatical structures and dependencies 

between words. This information helps in NLP models to generate 

grammatically correct translations in the target language while preserving 

the original sentence structure. Information extraction systems in many 

NLP applications use syntactic analysis to parse sentences and extract key 

entities, relationships, and actions. In another real-life scenario of legal 

contracts, syntactic parsing here can identify and structure important legal 

terms along with their connections. It’s helpful in the automated extraction 

of relevant clauses and obligations. Next, let’s examine the key concepts of 

this chapter one by one and try to develop the conceptual and hands-on 

skills at each one of them.

6.2.1  Part-of-Speech Tagging

Part-of-speech (POS) tagging is a fundamental step in greater NLP tasks. It 

labels each word in a sentence with its corresponding role within the context 

of the sentence. These roles can be nouns, verbs, adjectives, or adverbs. POS 

tagging helps us understand the grammatical structure of a sentence.

POS tagging lays the foundation for more advanced NLP tasks, such as 

parsing, information extraction, and text summarization. The POS tagging 

step typically uses algorithms that analyze the context of words by leveraging 

statistical models or rule-based systems to assign the correct tags.
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POS tagging can be resourcefully done using popular NLP libraries like 

NLTK, spaCy, and StanfordNLP. These libraries use pre-built models and 

tools that simplify the process of POS tagging. NLTK is ideal for educational 

purposes and comparatively simpler projects. spaCy, on the other hand, 

is known for its speed and accuracy. It is popularly used in production 

environments. spaCy also provides advanced features such as dependency 

parsing along with POS tagging, which makes it suitable for complex 

tasks. StanfordNLP is another powerful library offering high-accuracy 

POS tagging through its deep learning–based models. It supports multiple 

languages, making it a versatile choice for diverse NLP applications. All 

these libraries load a pre-trained model and pass a sentence or document 

through the model to get the POS tags for every word in an input sentence. 

The ease of use in these libraries allows NLP developers to integrate 

POS tagging into larger NLP pipelines to increase the text processing 

capabilities of their applications.

In the English language, words fall into one of eight or nine parts of 

speech as follows.

• Noun

• Verb

• Adjective

• Adverb

• Pronoun

• Preposition

• Conjunction

• Interjection

• Determiner
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We do not explain each POS tag. You are encouraged to use any 

English language grammar books. The nine POS tags are the most basic 

ones. In practice, the list of POS tags is much larger. For example, Table 6-1 

features the POS tags used by a CMU tagger. This tagger uses a total of 37 

POS tags, as listed in Table 6-1. A CMU tagger is a part-of-speech tagging 

tool specially designed for accurate and efficient POS tagging. Carnegie 

Mellon University developed it.

Table 6-1. POS Tags Used by CMU Tagger

Table 6-1 lists 37 POS tags; such a large number is required to capture 

the nuanced grammatical distinctions in language. More accurate parsing 

of sentences requires this level of detail. It allows the understanding of 

complex sentence structures by differentiating between similar but distinct 

word roles. Figure 6-1 depicts a simple example of POS tagging. 
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Figure 6-1. A simple example of POS tagging

6.2.2  POS Tagging Tutorials

The following are coding tutorials for POS tagging with NLTK and spaCy.

 POS Tagging with NLTK

!pip install nltk # Do it, if you gve not done lt already.

import nltk

nltk.download('punkt') # This we have seen n prevous chapters.

nltk.download('averaged_perceptron_tagger') # Tagger based on 

averaged perceptron algorithm.

sentence = "nltk it ideal for educational purposes and 

comparatively simpler projects."

tokens = nltk.word_tokenize(sentence)

pos_tags = nltk.pos_tag(tokens)

print(pos_tags)

OUTPUT:

[('nltk', 'IN'), ('it', 'PRP'), ('ideal', 'VB'), ('for', 'IN'), 

('educational', 'JJ'), ('purposes', 'NNS'), ('and', 'CC'), 

('comparatively', 'RB'), ('simpler', 'JJ'), ('projects', 

'NNS'), ('.', '.')]
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 POS Tagging with spaCy

Listing 6-1 contains the code for POS tagging using spaCy.

Listing 6-1. POS tagging

!pip install spacy # Do it, if you gve not done lt already.

# "en_core_web_sm" is a small, lightweight English language 

model in spaCy.

# It is ideal for quick NLP tasks.

!python -m spacy download en_core_web_sm

import spacy

nlp = spacy.load("en_core_web_sm")

Sample_doc = nlp("""Spacy, on the other hand, is known for its

speed and accuracy. It is popularly used in production 

environments. """)

for token in Sample_doc:

    print(token.text, token.pos_)

OUTPUT:

Spacy NOUN

, PUNCT

on ADP

the DET

other ADJ

hand NOUN

, PUNCT

is AUX

known VERB

for ADP

its PRON

speed NOUN
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and CCONJ

accuracy NOUN

. PUNCT

              SPACE

It PRON

is AUX

popularly ADV

used VERB

in ADP

production NOUN

environments NOUN

. PUNCT

Note the StanfordnLp demo is not included as its dependencies 

installing was taking much longer than reasonably expected.

Many NLP professionals use more complex LSTM-based POS tagging 

or other deep learning methods for the same because they may offer 

better performance for complex or specialized tasks. spaCy provides a 

faster and more user-friendly POS tagging approach, so it is better suited 

for r general-purpose applications. The choice of POS tagging technique 

depends upon the specific needs of your project. Stay tuned!

We close this section on POS tagging by putting forward their 

immediate uses, which you will see in this book.

• POS tagging plays an important role in building 

lemmatizes, which are used to reduce a word to its 

root form.
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• POS tags are useful for building parse trees and 

extracting relations between words, which are 

discussed in the next section.

• POS tags find use in NERs. Examples of NER are names 

of people, organizations, locations, and dates. Keep in 

mind that most named entities are Nouns.

6.2.3  Parsing Techniques

Parsing is breaking down a sentence into its constituent components 

and analyzing the relationships between words. Parsing allows machines 

to infer and process human languages more effectively. Parsing 

techniques provide the required framework for understanding the 

grammatical structure of sentences. Parsing techniques are divided into 

constituency parsing and dependency parsing. Constituency parsing 

finds the structure of a sentence by dividing it into nested phrases or 

constituents. Dependency parsing, on the other hand, keeps its focus 

on the relationships between words. It determines how each word 

depends on another within the sentence. With a proper understanding 

of how sentences are structured and how words relate to each other, NLP 

developers can produce systems that can better capture the delicacies 

of human language for building effective NLP solutions. Next, let’s look 

at dependency and constituency parsing in the details, just enough to 

understand them. Then, we go through a hands-on example.

 Dependency Parsing

Let’s start with an example sentence, “She gave the book to him.” 

A dependency parser breaks it down by detecting the grammatical 

relationships between the words and organizing them into a tree-like 

structure. This is how it works.
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 1. Root: The parser identifies the main verb “gave”, 

which gives us the root of the sentence.

 2. Subject (nsubj): The parser identifies “She” as the 

subject of the verb “gave.”

 3. Direct object (dobj): Next, the parser detects “book” 

as the direct object of “gave.”

 4. Prepositional phrase (prep): The parser finally 

characterizes “to him” as a prepositional phrase.

At the end, the dependency parser cuts the following structure to 

visually represent the grammatical structure of the given input sentence 

“She gave the book to him.”

• “gave” (root)

• “She” (nsubj)

• “book” (dobj)

• “to” (prep)

• “him” (pobj)

Common tags used in dependency parsing are as follows:

• nsubj (nominal subject): The noun or noun phrase, 

which is the subject of the verb.

• dobj (direct object): The noun or noun phrase, which 

directly receives the action of the verb.

• iobj (indirect object): The noun or noun phrase, which 

indirectly receives the action of the verb.

• attr (attribute): An adjective or adjective phrase that 

describes a noun.

• amod (adjectival modifier): An adjective 

modifying a noun.
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• advmod (adverbial modifier): An adverb modifying a 

verb, adjective, or another adverb.

• prep (prepositional modifier): A preposition 

introducing a prepositional phrase.

• pobj (prepositional object): The noun or noun phrase 

that follows a preposition.

• det (determiner): A word like “the” or “a” that 

modifies a noun.

• conj (conjunction): A word that connects other words 

or phrases, like “and” or “but”.

• cc (coordinating conjunction): A word that connects 

words or phrases of the same type.

• nmod (nominal modifier): A noun that modifies 

another noun.

• aux (auxiliary verb): A verb that helps form different 

tenses, moods, or voices of the main verb.

• expl (expletive): A word like “there” that does not have a 

substantive meaning but serves a grammatical function.

This method (dependency parsing) helps machines (read computers) 

realize input sentences by breaking them down into the connections 

depicted in the preceding tree. This process makes it easier for computers 

to figure out the meaning of the sentence. This way, instead of just 

recognizing the words, machines learn how the words fit together and 

work together in a sentence.

Dependency parsing involves breaking down an input sentence into 

the word level and then identifying the grammatical relationships between 

those words. In short, dependency parsing shows how each word connects 

to others by detecting the sentence structure.
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 Constituency Parsing

The constituency parsing technique builds a hierarchical tree that depicts 

how words group together into phrases. Dependency parsing, on the other 

hand, involves breaking down sentences to the word level.

Let’s take an example sentence, “The cat sat on the mat.”

First, identify the phrases.

• “The cat” is a noun phrase (NP) that serves as the 

subject.

• “sat on the mat” is a verb phrase (VP) that tells about 

the action and its details.

• “on the mat” is a prepositional phrase (PP) that 

modifies the verb.

Next, build the tree.

• The main verb phrase “sat on the mat” is at the root of 

the tree.

• “The cat” will serve as the subject.

• “on the mat” is connected to the verb phrase as an 

additional detail.

The formal tree resembles the following.

(S

  (NP The cat)

  (VP

    (V sat)

    (PP

      (P on)
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      (NP the mat)

    )

  )

)

In this tree,

• S represents the entire sentence.

• NP for noun phrases.

• VP represents verb phrases.

• PP stands for prepositional phrases.

The following are common tags used in constituency parsing.

• S (sentence): Stands for the complete sentence.

• NP (noun phrase): It groups nouns and their modifiers.

• VP (verb phrase): It stands for the main verb and its 

arguments.

• PP (prepositional phrase): Includes a preposition and 

its object.

• AdjP (adjective Phrase): It contains adjectives and their 

modifiers.

• AdvP (adverb phrase): It groups adverbs and their 

modifiers.

• Det (determiner): It stands for the words like “the,” “a,” 

or “an” that modify nouns.

• N (noun): Stands for nouns.

• V (verb): Represents verbs.

• P (preposition): Stands for prepositions.
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Constituency parsing and dependency parsing use different tags 

because they serve different purposes. POS tags are also different from the 

tags used in constituency and dependency parsing

6.2.4  Hands-on Example Covering for Parsing

Constituency parsing and dependency parsing are two different 

approaches to parsing. The first one emphasizes hierarchical structure, 

while the second focuses on grammatical relations. Which one has more 

prevalence in practice? Dependency parsing is more prevalent in practice. 

The reason is as follows. Dependency parsing is often aligned with the 

needs of many NLP tasks as its focus is on grammatical relationships, 

which plays a pivotal role in understanding sentence meaning. 

Dependency parsing is also generally more computationally efficient 

and flexible across languages. For these reasons, the code demo in the 

following section only uses a dependency parser.

 Dependency Parsing Code Demo

Listing 6-2 and Figure 6-2 are examples of dependency parsing.

Listing 6-2. Dependency Parcing

"""

You are strongly advised to run the following conda commands

on Anaconda command prompt before attempting to install or 

import spaCy.

"""

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c  

pytorch -c nvidia

conda install pytorch torchvision torchaudio cpuonly -c pytorch
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import spacy

# Displacy is SpaCy's visualization tool for rendering 

syntactic dependency parses in HTML format.

from spacy import displacy

# Load the required pre-trained SpaCy model.

nlp = spacy.load('en_core_web_sm')

# Create a sample sentence for processing.

sample_sentence = "She sells seashells by the seashore."

doc = nlp(sample_sentence)

# Print the dependency parsing result

for token in doc:

     print(f"Token: {token.text}, Head: {token.head.text}, 

Dependency: {token.dep_}")

# Set up options for visualization (fit in page).

options = {

    "compact": True,  # Makes the visualization more compact.

    "color": "blue",  # Changes color of the dependency lines.

    "bg": "white",    # Background color.

    "font": "Source Sans Pro",  # Font style.

    "arrow_stroke": 2,  # Thickness of the arrows.

    "arrow_stretch": 8,  # Stretch of the arrows.

    "distance": 100      # Distance between tokens.

}

# Render the dependency parser with the options set above.

displacy.render(doc, style='dep', options=options, 

jupyter=True)

OUTPUT:

Token: She, Head: sells, Dependency: nsubj

Token: sells, Head: sells, Dependency: ROOT
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Token: seashells, Head: sells, Dependency: dobj

Token: by, Head: sells, Dependency: prep

Token: the, Head: seashore, Dependency: det

Token: seashore, Head: by, Dependency: pobj

Token: ., Head: sells, Dependency: punct

<IPython.core.display.HTML object>

Figure 6-2. Dependency tree for the sample, “She sells seashells by the 
seashore.”

The following are explanations.

• Root node (“sells”): The verb “sells” is the central 

action. It forms the root of the tree.

• Subject (“She”): “She” is the subject. It performs the 

action of selling.

• Direct object (“seashells”): “Seashells” is the object 

being sold. It is linked directly to the verb.

• Prepositional phrase (“by the seashore”): “By” 

introduces the location. It modifies the verb “sells.”

• Modifiers (“the”): “The” specifies the noun “seashore.” 

It acts as a determiner.

Chapter 6  SyntaCtiC and SemantiC teChniqueS in nLp



228

6.2.5  Challenges in Syntactic Analysis

Input sentences can often be understood in several ways. The 

interpretation depends upon the context, word order, or even cultural 

nuances. So, it is always challenging to construct parsers that are able to 

maintain consistency in terms of producing accurate syntactic structures 

for complex sentences. Complex sentence structures can include nested 

clauses, idiomatic expressions, and non-standard grammar. All of it can be 

enough to confuse syntactic parsers. Several sophisticated algorithms are 

developed to deal with such complexities. These algorithms have built-in 

extensive linguistic knowledge and complex mathematics to accurately 

analyze and crack these challenges.

The issue of resource limitations is an additional roadblock that 

syntactic analyzers have to deal with. High-quality syntactic parsing 

typically needs huge computational resources and large labeled datasets. 

Both, the computing resources and labeled datasets, are costly and time- 

consuming to acquire. When it comes to different languages or specialized 

domains, syntactic parsers often require significant customization. It 

further adds to the complexity in the way of effective syntactic analysis 

for diverse NLP applications. Let’s try to understand this with a sample 

sentence as follows.

“He told his friend that he will win the race.”

You might have guessed the ambiguity by now. The pronoun 

“he” could refer to either “he” or “his friend,” leading to two possible 

interpretations:

• He (the original subject) will win the race.

• His friend will win the race.

The parser needs to take the help of context or some extra information 

to resolve the disambiguate to correctly infer who is expected to win the 

race. It could either be the speaker or the speaker’s friend. It is dependent 

on the context.
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We can take the help by generating several parse trees for the same 

sentence. Every tree can represent a different possible structure. Each 

structure depicts how the phrases and clauses relate to each other. The 

parser then uses grammatical rules to assess each of these trees and finally 

resolve the most coherent structure.

Parsers also employ statistical models and special disambiguation 

algorithms to further refine their analysis. Such statistical models are 

already trained on large relevant datasets. These models can predict 

(with a probability) which interpretation is most likely based on historical 

usage patterns. A probabilistic context-free grammar is also employed 

to compare several parse trees and select the most probabilistic 

interpretation.

More sophisticated parsers use a combination of these techniques, 

using context, grammatical rules, and statistical data to effectively handle 

ambiguities and resolve issues related to complex sentences.

6.3  Introduction to Semantics

Semantic analysis concentrates on understanding the meaning of words, 

sentences, and entire texts. In lexical analysis, the focus is on breaking 

down text into words or basic units of tokens. And syntactic analysis 

involves the structure and grammar of sentences. Unlike syntactic analysis, 

semantic analysis probes into the understanding of the meaning (of words 

and sentences) so that machines can comprehend human language in a 

contextually accurate and meaningful manner. Under semantic analysis, 

we examine a few key concepts, including chunking and term frequency–

inverse document frequency, which are classically linked to syntactic 

techniques.

Word sense disambiguation (WSD) is a pivotal technique in semantic 

analysis. It gets us the correct meaning of a word based on its context. For 

instance, consider a sample sentence, “The Bank of London is situated on 
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the east bank of the River Thames.” Here, the word “bank” could refer to 

a financial institution or the side of a river. WSD helps in resolving such 

ambiguities and finds the appropriate context-based meaning of a word(s) 

in a given input sentence.

The semantic similarity technique is used to find out how similar 

or different two pieces of text are in terms of meaning. It helps in 

understanding the meaning and context of the text, allowing documents 

with similar themes or topics to be clustered accurately, a process known 

as document clustering.

NER techniques identify and classify entities in text. Entities are names 

of people, organizations, locations, dates, and so forth. So, in a way, NER 

extracts structured information from unstructured text.

Chunking or shallow parsing focuses on breaking sentences into 

smaller, syntactically related chunks such as noun or verb phrases. It helps 

in understanding the structure of a sentence by breaking it down into its 

component parts.

A term-document matrix (or co-occurrence matrix) captures the 

frequency of various terms across the input documents. It is concerned with 

how often words appear. Term frequency–inverse document frequency 

(TF–IDF) is built on a term-document matrix because it further hones the 

importance of these terms. TF–IDF considers both the frequency of terms 

(in a given input document) and their rarity across the entire input corpus. 

TF–IDF offers a more nuanced understanding of word significance.

These techniques help bridge the gap between words and their 

meaning to build a deeper understanding of language.

6.3.1  Chunking in NLP

Chunking breaks down an input sentence into smaller, meaningful 

units, which can be as simple as noun phrases (NP) or verb phrases 

(VP). Grouping words into chunks helps to grasp the syntactic structure 

of a sentence. Chunking makes it simpler to analyze the roles played 
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by individual words. In chunking, the focus is on extracting essential 

information quickly (partial parsing). Full parsing, on the other hand, 

seeks to analyze the complete grammatical structure of input sentences. 

Chunking finds uses in specific tasks, such as NER and question-answering 

systems, in which quickly extracting specific phrases is more important 

than analyzing the entire grammatical structure of a sentence.

Let’s apply chunking to the first sentence of this paragraph. The 

following repeats it for convenience.

“ “ “

Chunking, as we talked earlier, is breaking down an input 
sentence into smaller, meaningful units, which can be as  
simple as noun phrases (NP) or verb phrases (VP). Grouping 
of words into chunks, helps to grasp the syntactic structure of a 
sentence.

” ” ”

We can extract the following six chunks out of this sentence:

 1. Chunking, (NP)

 2. as we talked earlier, (PP: prepositional phrase)

 3. is breaking down (VP: verb phrase)

 4. an input sentence (NP: noun phrase)

 5. into smaller, meaningful units, (PP)

 6. which can be as simple as noun phrases (NP) or 

verb phrases (VP). (Clause)

In this example, noun phrases (NP), verb phrases (VP), and 

prepositional phrases (PP) have been recognized as the significant chunks 

of the sentence.
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Let’s take one more example as follows.

“””

Full parsing, on the other hand, seeks to analyze the complete 
grammatical structure of input sentences.

“””

We can extract the following five chunks out of this second example.

 1. Full parsing, (NP: noun phrase)

 2. on the other hand, (PP: prepositional phrase)

 3. seeks to analyze (VP: verb phrase)

 4. the complete grammatical structure  

(NP: noun phrase)

 5. of input sentences. (PP: prepositional phrase)

Noun phrases (NP), verb phrases (VP), and prepositional phrases (PP) 

have been found as the key components (chunks) of the sentence.

With these examples, chunks and chunking might be pretty clear 

to you. If not, you can refer to any standard NLP book for additional 

examples.

For chunking, the algorithm(s) groups together syntactically related 

units (words) like noun phrases (NP) or verb phrases (VP). During 

chunking, the input text is skimmed through for these patterns. On finding 

a match, the corresponding words are grouped together to form a chunk. 

Chunking avoids a full syntactic analysis, but it still breaks the sentence 

into its most meaningful components. This makes chunking a fast and 

efficient technique to parse input text for further processing.

The foremost challenge in chunking is the ambiguity in language. 

Words have multiple roles depending on context. This makes it difficult 

to accurately recognize and group them into the correct chunks. Another 

challenge in chunking is dealing with exceptions and variations in 

Chapter 6  SyntaCtiC and SemantiC teChniqueS in nLp



233

sentence structure. Additionally, chunking finds it difficult to deal with 

out-of-vocabulary words and uncommon phrases. These challenges can 

be handled to some extent using models that employ a combination of 

rule-based and machine learning approaches.

NLTK, spaCy, and TextBlob are the popular Python libraries that 

professionals and researchers use for chunking. These standard libraries 

are convenient and powerful, but custom deep learning solutions may 

be required for scalability and specialized NLP tasks. Advanced models 

using transformer models can further enhance chunking capabilities. 

Such custom models may sometimes offer better precision, flexibility, and 

scalability. We include a code demo of chunking toward the end of this 

chapter. Stay tuned!

6.3.2  Named Entity Recognition

Named entity recognition (NER) focuses on recognizing and classifying 

named entities in text. Named entities are names of people, organizations, 

locations, dates, and more. Identifying named entities is crucial for 

understanding the context and meaning of the text.

Let’s try to understand it by a couple of examples as follows.

In the sentence, “John shifted to New York on 24th August 2020 with 

his family,” the NER would extract the named entities as John (person), 

New York (location), and 24th August 2020 (date).

In the sentence, “Sarah traveled to San Francisco on 10th October 

2023 to attend a conference,” the named entities are Sarah (person), San 

Francisco (location), and 10th October 2023 (date).

Note that “San Francisco” and “New Delhi” are multi-word or multi- 

token entities. NER programs handle such words by examining the words 

around them and recognizing patterns—specifically, contextual analysis 

and sequence labeling. Some NER systems have pre-compiled lists of 

known entities (gazetteers) to help detect such multi-word entities.
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For detecting named entities, the entire text is scanned to identify the 

phrases that fit certain predefined categories like “person,” “location,” 

and “dates.” The challenges in NER are similar to those in WSD, including 

language ambiguity, context understanding, variability in naming, 

incomplete data, and differences in language and dialect.

In applications such as news aggregation and summarization, 

NER facilitates the summarization of news articles and helps prepare 

news clusters around specific topics or entities. There are many other 

applications of NER, like customer service automation, financial market 

analysis, healthcare applications, and social media monitoring. NER 

helps service automatize customer service applications by identifying 

key entities in queries for precise responses. It supports financial market 

analysis, healthcare applications, and social media monitoring by mining 

relevant information for informed decision-making and efficient data 

management.

6.3.3  WSD Revisited

Let’s revisit WSD’s relatively unfamiliar aspects, starting with how 

it integrates with larger applications. WSD can further enhance the 

accuracy of NER and information extraction. Suppose the input text 

contains a sentence like “Apple released its new MacBook model at 

a press conference in Cupertino.” As such, “apple” is recognized as a 

named entity (fruit), but WSD can correctly disambiguate it as a company 

by correctly analyzing its context. This type of accurate WSD can also 

improve the overall performance of other NLP systems. Correct word 

disambiguation can be useful in several other NLP tasks like machine 

translation, sentiment analysis, search engines, voice assistants, and text 

summarization. Accurate interpretation of ambiguous words enhances the 

effectiveness and results of these applications.

Chapter 6  SyntaCtiC and SemantiC teChniqueS in nLp



235

Now let’s talk about a couple of more popular methods for performing 

WSD: knowledge-based, statistical, and neural methods. Knowledge- based 

methods employ predefined dictionaries and rules for WSD. They offer high 

accuracy but are limited in adaptability. Statistical models use probabilistic 

models and training on large corpora to forecast word meanings depending 

on context. Neural network models are powered deep learning to capture 

complex patterns and contextual nuances. They are useful for more dynamic 

and accurate disambiguation in complex scenarios, but they are more 

resource-consuming in terms of time, computing power, and extensive 

training data.

Knowledge-based methods are inflexible and have limited adaptability 

as they are limited by their dependency on pre-existing rules and 

dictionaries. Statistical methods, on the other hand, are more adaptable, 

but they require large datasets to be effective, which may not always be 

available. Statistical methods have less precision in handling nuanced 

contexts because of their dependency on probabilistic models. Deep 

learning–based methods are powerful, but like most other applications 

using this technology, they need significant computational resources 

and extensive training data. This makes them costly and complex to 

implement. So, they are used in only special and complex business cases. 

Some models for WSD use a combination of these methods. This is done to 

leverage their individual strengths to address their limitations.

Like most NLP tasks, WSD also comes with its own limitations. 

Polysemy, that is, words with multiple meanings, pose a significant 

challenge, especially when the correct meaning depends on delicate 

contextual evidence. Insufficiently annotated data (data sparsity) for 

training WSD models is another limitation. It can limit the NLP model’s 

generalization and performance. Adaptation to multiple domains for 

a model trained on a specific domain, as well as the computational 

complexity of models, especially those belonging to deep learning 

technologies, adds to the limitations of WSD models.
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Advanced WSD techniques are based on transformer models that are 

capable of capturing deeper semantic relationships.

6.3.4  Term-Document Matrix 
(Co-Occurrence Matrix)

A term-document matrix helps to convert text data into a structured, 

numerical format, which is essential for NLP models to process it further. 

The term-document matrix, also known as a co-occurrence matrix, is a 

matrix that represents the frequency of words occurring in a document 

set. In this matrix, rows typically represent unique words (terms), and 

columns represent different documents. Each cell in the matrix contains 

the frequency of occurrence of a specific word in a particular document.

Let’s try to understand the term-document matrix with the following 

set of three simplified documents.

• Document 1: “Apple and banana are fruits.”

• Document 2: “I like to eat apple pie.”

• Document 3: “The banana pie is delicious.”

The next task is to find the 13 unique words in these documents: apple, 

banana, and, are, fruits, I, like, to, eat, pie, is, delicious, the.

Now, we need to build a matrix with rows representing these unique 

words and columns representing the three documents. Each cell in 

the following matrix specifies how many times a term appears in that 

particular document. Note that the term “apple” appears in document 

1 as well as in document 2. “Banana” appears in documents 1 and 3. No 

other term repeats. The cells of the matrix (see Table 6-2) get specified 

accordingly.
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Table 6-2. Term-Document Matrix

Term Document 1 Document 2 Document 3

apple 1 1 0

banana 1 0 1

and 1 0 0

are 1 0 0

fruits 1 0 0

i 0 1 0

like 0 1 0

to 0 1 0

eat 0 1 0

pie 0 1 1

is 0 0 1

delicious 0 0 1

the 0 0 1

The matrix shown in Table 6-2 helps you quantitatively analyze the 

occurrence and distribution of words across documents (in a set). It’s used 

for several NLP tasks, such as identifying key terms, clustering similar 

documents, and forming the basis for further analysis.

Here is how we can use the matrix specific to Table 6-2. This matrix 

enables us to visualize how the three given documents are represented as 

numeric vectors.

• Document 1 vector: [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

• Document 2 vector: [1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0]

• Document 3 vector: [0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
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These documents are now represented as numeric vectors, which 

are then fed into NLP machine learning models to classify them into 

predefined categories, such as spam detection or topic classification. There 

are numerous other applications of these numeric vector representations 

of the original text documents. We used similar vectors in our Chapter 1 

code demos.

6.3.5  Term Frequency–Inverse Document  
Frequency

There are two components in this term. Term frequency (TF) is concerned 

with how frequently a term appears in a specified document. Inverse 

document frequency (IDF) decreases the weight of terms that appear in 

multiple documents across the given input corpus. IDF gives importance 

to unique terms. More formally, TF–IDF is a statistical measure used to 

assess the importance of a term in a document relative to a collection of 

documents (input corpus). It finds widespread use in text-mining tasks to 

rank the relevance of documents based on a query. It assigns more weights 

to the words that are common in a particular document but rare across 

the input corpus. TF–IDF, thus, helps to identify the most significant words 

that best represent the content of a document.

Let’s try to understand this phenomenon using the same set of 

documents as we used in the previous section. The following repeats it for 

a ready reference.

• Document 1: “Apple and banana are fruits.”

• Document 2: “I like to eat apple pie.”

• Document 3: “The banana pie is delicious.”

The next step is to calculate term frequency (TF) as follows.

To calculate TF, find out the number of times a term appears in a 

document and divide it by the total number of terms in that document.
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• TF for document 1

• apple: 1/5

• banana: 1/5

• and: 1/5

• are: 1/5

• fruits: 1/5

• TF for document 2

• apple: 1/6

• like: 1/6

• to: 1/6

• eat: 1/6

• pie: 1/6

• I: 1/6

• TF for document 2

• banana: 1/6

• pie: 1/6

• is: 1/6

• delicious: 1/6

• the: 1/6

Then, calculate inverse document frequency (IDF). It is calculated as 

the logarithm of the total number of documents divided by the number of 

documents containing the term, which is as follows.

Chapter 6  SyntaCtiC and SemantiC teChniqueS in nLp



240

• apple: log(3/2) ≈ 0.18

• banana: log(3/2) ≈ 0.18

• pie: log(3/2) ≈ 0.18

• and: log(3/1) ≈ 0.48

• are: log(3/1) ≈ 0.48

• fruits: log(3/1) ≈ 0.48

• like, to, eat, I: log(3/1) ≈ 0.48

• is, delicious, the: log(3/1) ≈ 0.48

Finally, calculate the TF–IDF for each document by multiplying the  

TF by the IDF for each term in each document.

• Document 1

• apple: 1/5 * 0.18 = 0.036

• banana: 1/5 * 0.18 = 0.036

• and: 1/5 * 0.48 = 0.096

• are: 1/5 * 0.48 = 0.096

• fruits: 1/5 * 0.48 = 0.096

• Document 2

• apple: 1/6 * 0.18 = 0.03

• pie: 1/6 * 0.18 = 0.03

• like, to, eat, I: 1/6 * 0.48 ≈ 0.08 each

• Document 3

• banana: 1/6 * 0.18 = 0.03

• pie: 1/6 * 0.18 = 0.03

• is, delicious, the: 1/6 * 0.48 ≈ 0.08 each
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Note the following.

• In document 1, “and,” “are,” and “fruits” have slightly 

higher TF–IDF scores as compared to “apple,” “banana,” 

and “fruits.” It is because “and,” “are,” and “fruits” are 

less common across documents.

• In the remaining documents, the terms “apple” and 

“banana” have lower TF–IDF scores as they appear in 

multiple documents. Unique words such as “I,” “like,” 

“delicious,” and “the” get slightly higher scores.

We can conveniently represent TF–IDF scores for each term in the 

documents as a table. Table 6-3 shows how the TF–IDF matrix would look 

for the three example documents.

Table 6-3. TF–IDF Matrix

Term Document 1 Document 2 Document 3

apple 0.036 0.03 0.03

banana 0.036 0.03 0.03

and 0.096 0.08 0.08

are 0.096 0.08 0.08

fruits 0.096 0.08 0.08

like 0 0.08 0

to 0 0.08 0

eat 0 0.08 0

pie 0 0.03 0.03

i 0 0.08 0

is 0 0 0.08

delicious 0 0 0.08

the 0 0 0.08
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Let’s take a few notes from Table 6-3.

• Each cell represents the TF–IDF score of each term in 

the given set of three input documents.

• For example, in document 1, “apple” has a TF–IDF 

score of 0.036, which indicates its importance relative 

to the document and the corpus.

• Terms like “and,” “are,” and “fruits” have higher TF–IDF 

scores in document 1 because they are more significant 

to this document compared to the others.

• TF–IDF improves the precision and effectiveness 

of NLP applications as it focuses on unique and 

significant and significant terms as completed a term- 

document matrix.

6.3.6  Coding Tutorials for This Section

The following is the Python code tutorial on term-document matrixes,  

TF–IDF, chunking, NER, and WSD.

# Install these libraries, if not done already.

# !pip install nltk spacy sklearn

!python -m spacy download en_core_web_sm

import nltk

import spacy

import numpy as np

import pandas as pd

from sklearn.feature_extraction.text import TfidfVectorizer

# Load SpaCy model.

nlp = spacy.load("en_core_web_sm")
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# Sample Documents.

documents = [

    "Apple and banana are fruits.",

    "I like to eat apple pie.",

    "The banana pie is delicious."]

 Chunking

def chunking_example(doc):

    chunks = []

    for sent in doc.sents:

        for chunk in sent.noun_chunks:

            chunks.append(chunk.text)

    return chunks

 Named Entity Recognition

def ner_example(doc):

    entities = [(ent.text, ent.label_) for ent in doc.ents]

    return entities

 Word Sense Disambiguation

def wsd_example(word, context):

    # Simplistic approach for demonstration

    if word == "apple":

        if "pie" in context:

            return "The tech company"

        else:

            return "The fruit"

    return None
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 Term-Document Matrix

# Create the Term-Document Matrix using raw counts.

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()

X = vectorizer.fit_transform(documents)

# Create DataFrame for better visualization

df_term_doc = pd.DataFrame(X.toarray(), columns=vectorizer.

get_feature_names_out())

print("Term-Document Matrix:\n", df_term_doc)

Term-Document Matrix:

  and apple are banana delicious eat fruits is like pie the to

0  1    1  1     1        0  0       1   0     0    0    0   0

1  0    1  0     0        0  1       0   0     1    1    0   1

2  0    0  0     1        1  0       0   1     0    1    1   0

 TF–IDF

from sklearn.feature_extraction.text import TfidfVectorizer

import pandas as pd

# Example Documents

documents = [

    "Apple and banana are fruits.",

    "I like to eat apple pie.",

    "The banana pie is delicious."

]

# Create the TF-IDF Matrix

vectorizer = TfidfVectorizer()

X = vectorizer.fit_transform(documents)
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# Create DataFrame for better visualization

df_tfidf = pd.DataFrame(X.toarray(), columns=vectorizer.get_

feature_names_out())

print("TF-IDF Matrix:\n", df_tfidf)

TF-IDF Matrix:

     and   apple     are  banana  delicious     eat  fruits  \

0  0.490479  0.373022  0.490479  0.373022  0.000000  0.00000

0  0.490479

1  0.000000  0.373022  0.000000  0.000000  0.000000  0.49047

9  0.000000

2  0.000000  0.000000  0.000000  0.373022  0.490479  0.00000

0  0.000000

         is      like       pie       the        to

0  0.000000  0.000000  0.000000  0.000000  0.000000

1  0.000000  0.490479  0.373022  0.000000  0.490479

2  0.490479  0.000000  0.373022  0.490479  0.000000

• The discrepancy between the manually calculated TF–IDF 

values and those calculated by the program might arise 

from several factors. It may be due to the way TF–IDF 

values are computed or normalized. It is also possible that 

certain preprocessing steps or default settings in the  

libraries might lead to differences.

• But both manual and program calculated values should 

show the same terms as significant.

• Doc 1 significant terms: “Apple,” “banana”

• Doc 2 significant terms: “apple,” “pie”

• Doc 3 significant terms: “banana,” “pie”
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# Process sample documents.

docs_spacy = [nlp(doc) for doc in documents]

print(docs_spacy)

[Apple and banana are fruits., I like to eat 

apple pie., The banana pie is delicious.]

# Try chunking.

# Uses SpaCy to extract noun chunks from each 

document.

chunks = [chunking_example(doc) for doc in 

docs_spacy]

print("Chunks:", chunks)

Chunks: [['Apple', 'banana', 'fruits'],  

['I', 'apple pie'], ['The banana pie']]

# Try NER.

# Identifies named entities such as persons,  

locations, and organizations in the documents.

ner_results = [ner_example(doc) for doc in 

docs_spacy]

print("Named Entities:",ner_results)

Named Entities: [[('Apple', 'ORG')], [], []]

• No named entities were detected in documents 2 and 3. 

It is likely because “apple pie” and “banana pie” are not 

recognized as a named entity.

• It could be because of model limitations of the pre- 

trained spaCy model (en_core_web_sm). Larger 

models (en_core_web_md or en_core_web_lg), have 

more extensive training data. So, you can try with them. 

By using a larger model or adjusting the text, you may 

get better results.
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Listing 6-3. Context-Based Interpretation

# Try WSD.

'''

A simplistic approach is used here to demonstrate

how "apple" might be interpreted based on context.

'''

wsd_results = [wsd_example("apple", doc.text) for doc in 

docs_spacy]

print("WSD Results:", wsd_results)

WSD Results: ['The fruit', 'The tech company', 'The tech 

company']

6.4  Lexical Semantics

In NLP, understanding the words and their relationships is covered in lexical  

semantics. This concept is related to determining the meaning of each 

individual word in the sentence. Lexical semantics also focus on the relation 

of words with each other using synonyms, antonyms, and alike. It is also 

concerned with the change in the meaning of words in different contexts. 

Lexical semantics helps in NLP tasks like WSD and machine translation. 

Lexical semantics plays a pivotal role in the development of algorithms that 

are suitable for processing the human language more correctly, which is very 

similar to human reasoning. This section discusses the key concepts of  

lexical semantics, such as synonyms, antonyms, homophones, and polysemy. 

The following descriptions are meaningful but concise.
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6.4.1  Synonyms

Other than similar meanings, the synonyms have much more role to 

play in NLP. NLP supports the creation of flexible and accurate language 

models. For every NLP model, it is necessary to understand that individual 

words or phrases convey different ideas in different contexts.

The following example shows the usage of the word “bright,” which can 

have different meanings in different situations.

• Context 1: “ The sun is very “bright” today.”

• Context 2: “Sarah is a “bright” student.”

In context 1, “bright” means shiny, while in context 2, the word 

“bright” means intelligent.

Many practical NLP tasks, like automation applications dealing with 

customer interactions, require the correct recognition of synonyms in different 

contexts, as this could result in incomplete or inaccurate interpretations of 

sentences. Synonyms are also useful in expanding the training data. The 

available training data can be diversified by substituting the words with their 

synonyms to generalize the machine learning models. Whenever we come 

across imbalanced datasets, this type of data augmentation technique is very 

useful. Failing to correctly recognize synonyms in different contexts could 

result in incomplete or inaccurate interpretations of sentences for NLP tasks 

like automation applications dealing with customer interactions.

Voice assistants and chatbots are practical applications in which  

correct identification of synonyms is very critical for the proper response in 

situations where people use different words to mean the same thing, even 

if they use slightly different words in the new language. For example, if an 

English word like “tired” is translated into Spanish, the translator might 

choose between “cansado” or “agotado” depending on the situation. Both 

words mean tired, but they fit better in different contexts.
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Another important aspect of synonyms is their ability to generate diverse 

text by using different words that convey the same meaning. This flexibility  

allows applications, especially those in creative writing or automated customer 

responses, to create more diverse and engaging content. Integrating a range 

of synonyms, NLP systems can produce text that feels more natural and less 

repetitive, thereby ensuring that the generated text aligns with the intended 

tone and style.

Another technique for handling context-based synonyms is WSD. In 

this technique, the analysis of context is performed to determine the 

correct sense of words so that the most appropriate synonym is selected. 

For this, computational methods are employed to quantify the semantic 

similarity measurement of two words in their meanings. Several NLP tasks, 

such as document clustering and retrieval, can be performed by these 

methods. Vector representation of words comes under advanced NLP 

models. These methods are more sophisticated and help in understand-

ing the relationship between words (and synonyms) and making possible 

more sophisticated understanding and generation of language. Vector 

representation words are covered in an upcoming chapter. We effectively 

make use of such vectors to convert text (words) to numeric representations 

for use in our NLP models.

6.4.2  Antonyms

Antonyms and synonyms work together in NLP applications. Antonyms 

represent differences, while synonyms emphasize similarities. Antonyms 

are very crucial for any language as they support differentiating the delicate 

variances in meaning and context.

Identifying the opposing words supports the interpretation of the  

intensity, tone, and underlying implications of a text. A proper understanding 

of antonyms supports the full scope of sentiment, irony, and contrast, which 

are crucial to have a deeper meaning of the text. For example, if we realize 

that “happy” is the opposite of “sad,” it helps NLP algorithms to capture the 
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sentiment polarity in a given context. The main contribution of antonyms is 

in the in-text classification, WSD, and machine translation by appropriate 

selection of the correct meaning of a word based on its context.

As with synonyms, understanding context is essential for finding  

antonyms. Let’s take a sample statement as follows.

“””

The light box was easy to carry, but when the room was dark,

I turned on the light to see better.

“””

“Light” appears in two places in this sample statement. In the first 

appearance, it refers to weight, meaning the box is not heavy (the formal 

anonym in this case would be “heavy”). In the second appearance, “light” 

refers to illumination, meaning a source of light used to brighten the room 

(antonym in this appearance,” dark”).

Without a proper understanding of language, in some cases, it is very 

difficult to detect antonyms. For machines, this kind of expertise is very  

difficult to achieve. Some simple use cases for the easy detection of antonyms 

are “full” and “empty”. But due to the conceptual differences in the deeper 

meaning of words such as “freedom” and “constraint”, the identification of 

antonyms requires a deeper understanding of context and connotation.

Linguistic changes and cultural variations affect the antonym connections. 

Over a period of time, words may become less common and may also 

acquire new meanings. The dynamic nature of language makes the task of 

accurately detecting the specific antonym more difficult when used in a 

variety of datasets and various circumstances it is used.

For the detection of antonyms, both statistical and dictionary-based 

approaches are used. Statistical methods are used on a large quantity 

of words to analyze the word usage and predict the probable antonyms 

based on context. Another approach to deal with this is a dictionary-based 
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method, which mainly depends upon the predefined lexical resources. 

These lexical resources also list antonyms and thus directly provide the 

ready reference of a pair of words.

6.4.3  Homophones

Homophones are the words with the same sound but have different  

meanings. They have different spellings. Due to their same pronunciations, 

the right meaning of homophones depends mainly on the context. This 

can sometimes be very challenging in NLP.

Homophones are words that sound the same but have different  

meanings. They frequently have dissimilar spellings. Homophones pose 

some unique challenges in NLP. Grasping the right meaning, in this case, 

is dependent solely on the context. For example, “pair” and “pear” both 

these words have the same pronunciations, but they refer to completely 

different things. “Pair” stands for a set of two objects, while “pear” means a 

type of fruit. The following are more common instances of homonyms.

• “Their,” “There,” and “They’re”

• “To,” “Too,” and “Two”

• “Right” and “Write”

Understanding homonyms is especially important in tasks like speech 

recognition and text-to-speech conversion. In the preceding applications, 

the accurate identification of homophones is very critical for preserving 

the meaning. An example of this is “pair” and “pear”. The two phrases  

“I need a pair of shoes” and “I need a pear of shoes” have an entirely  

different meaning. In the later sentence, “pear” looks like a wrong usage in 

the given phrase.

Regular NLP models must be able to handle homophones effectively. 

They do so by relying on contextual clues and surrounding words to crack 

the intended meaning. Context-based WSD techniques leverage large text 
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corpora for their model training. It helps models differentiate homophones 

in various contexts and correctly interpret them. The elusive nature of  

homophones often necessitates sophisticated NLP models that can  

efficiently use contextual clues to differentiate between homophones.

6.4.4  Homographs

Homographs are words that have the same spelling but are different in 

meaning. In special cases, they even different pronunciations. For  

instance, the word “lead” refers to a specific metal, pronounced (“led”). 

“Lead” also refers to an act of guiding someone, pronounced “leed”). This 

unique property of homographs can cause uncertainty in both written and 

spoken language. The meaning homographs is resolved based on its  

context within a sentence or overall text. The following are a couple of 

common examples of homographs. Notice that same spelled words in all 

the three examples have different meanings depending upon the context 

and surrounding words within a sentence.

• “Bow”: A gesture of bending forward or a weapon 

or ribbon.

• “Tear”: A drop from the eye or the act of ripping.

• “Wind”: Moving air or the act of twisting.

Dealing with homographs, like homophones, also requires a cautious 

analysis of surrounding words and general context to precisely detect the 

intended meaning. As the same spelling can lead to diverse interpretations, 

it makes it necessary for NLP applications to use advanced language models. 

Such advanced techniques typically involve correctly processing context-

based word disambiguation.

Homographs are predominantly challenging in language tasks involving 

speech, like text-to-speech and speech recognition. In such applications, the 

correct pronunciation is the key to conveying the precise meaning.
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6.4.5  Polysemy

In polysemy, a single word or a phrase has diverse meanings, which relate 

to each other by a common origin or context. In polysemy, the spelling 

of the word remains the same for all its meanings. Its diverse meanings 

can only be differentiated by context rather than by variations in spell-

ing. Polysemy involves a single word with multiple related meanings. 

Homographs, on the other hand, deal with words that share the same 

spelling but have different, sometimes unrelated, meanings and pro-

nunciations. In other words, polysemous words have multiple meanings 

originating from the same origin, while homograph words have different 

origins and multiple meanings.

The following are a few examples.

• Let’s consider the word “head.” It can mean the upper 

part of the body or the leader of a group. It is a poly-

semous word because its meanings are related to the 

common concept of being at the forefront or in a lead-

ing position.

• Now consider the word “lead”. It can represent a type of 

metal or guide. “Lead” is a homograph, not polysemy, 

because its meanings are unrelated and have different 

pronunciations.

An accurate understanding of polysemous words is crucial for many 

applications like translating text and sentiment analysis. As applicable in 

many other phenomena explained in this section, for correct interpretation 

of polysemous words, understanding of context is an absolute must for the 

language models.
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6.4.6  Hyponyms

We open this section with an example. The word “vehicle” is a hypernym 

with hyponyms like “car,” “truck,” “bus,” and “motorcycle.” Hyponyms can 

sometimes have their own hyponyms. It creates an intricate network of 

relationships. More formally, hyponymy is a type of semantic relationship 

between words where one word (the hyponym) is a more specific instance 

of another word (the hypernym). In a simpler example, “cat” is a hyponym 

of the word “animal,” as it is a specific type of animal. Hyponyms can  

specifically help language generation models in producing more diverse 

and detailed content, avoiding repetition and adding depth to descriptions. 

For example, in language generation tasks, instead of repeatedly using the 

general term “vehicle,” a generative application can use hyponyms like 

“car,” “truck,” “bicycle,” or “motorcycle” to add variety and specificity to the 

content. This can create more engaging text while providing more accurate 

information to readers. This way, the generated language can capture 

the richness of the original text. Other applications of homonyms can be 

dialogue-based applications, in which maintaining a natural and diverse 

conversation is critical.

Detecting homonyms in a given input text again involves analyzing the 

context in which a word is placed. Methods to detect homonyms can yet 

again be both statistical and dictionary-based. Statistical methods often 

analyze the frequency and co-occurrence of words in large text corpora 

to deduce various context-based meanings. In contrast, dictionary-based 

techniques employ lexical databases like WordNet to map words to their 

several senses. Both the techniques can as well complement each other. 

Statistical techniques are better at providing context-based clues, while 

dictionary-based methods offer precise definitions and sense distinctions.
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6.4.7  Building Lexical Semantic Models with 
Code Examples

Now, let’s put these concepts into action. We address a few NLP-related 

business problems linked to content personalization, information retriev-

al, and user engagement. Let’s examine how each concept in this section 

contributes to solving real-world business problems.

• Business problem 1: Improve search relevance and 

content matching.

• Business solution: Use synonyms to solve this 

problem. We try to detect the different ways 

(different words or phrases) that users can use for 

search. It ensures that relevant content is retrieved 

even if the exact query phrases are different from 

the wordings of the content.

• Technical solution: Use wn.synsets(token) to 

retrieve synsets (synonyms) of a word and collect 

synonyms from the lemmas of these synsets.

• Business problem 2: Clarify content context and  

preventing misinterpretation.

• Business solution: Use antonyms here to ensure 

that content is accurately understood in the given 

context.

• Technical solution: Use wn.synsets(token) to 

detect antonyms by examining if the lemma has any 

antonyms.

• Business problem 3: Avoid errors in speech recognition  

and text analysis.
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• Business solution: Use homophones in this case. It helps 

in confirming that the generated text or interpreted text 

does not hold errors due to phonetic  similarities.

• Technical solution: WordNet does not provide any 

direct phonetic information. However, we can use 

lemma names to approximate homophones.

• Business problem 4: Ensure accurate text analysis and 

context understanding.

• Business solution: Employ detecting homographs 

in this case as it helps in correctly interpreting text.

• Technical solution: Use wn.synsets(token) to 

check different POS for the same word to recognize 

homographs.

• Business problem 5: Enhancing content understanding 

and contextual relevance.

• Business solution: Detecting polysemy helps to 

improve the accuracy of content analysis tools.

• Technical solution: Count the number of synsets 

for a word to identify if it has multiple meanings.

• Business problem 6: Categorizing and personalizing 

content.

• Business solution: Recognizing hyponyms permits 

businesses to classify content more effectually 

and personalize user experiences by matching 

individual user interests with relevant content.

• Technical solution: Employ hyponyms of generic 

words to match and classify specific tokens in the text.
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Next, let’s put these solutions into action using nltk functions.

 Tutorial on Synonyms, Antonyms, Homophones, 
Homographs, Polysemy, and Hyponyms

# Imports the nltk library for text processing

import nltk

# Imports WordNet to access synonyms, antonyms, and word 

meanings.

from nltk.corpus import wordnet as wn

# Imports the function to tokenize text into words.

from nltk.tokenize import word_tokenize

# Downloads the WordNet lexical database.

nltk.download('wordnet')

# Downloads the Open multilingual WordNet package.

# It is needed for some language-related tasks.

nltk.download('omw-1.4')

# Downloads the Punkt tokenizer models for sentence and word 

tokenization.

nltk.download('punkt')

# Mention the sample text.

article_text = """

The lead engineer in the new bridge project has made a 

breakthrough.

The team is now looking at the potential impacts of their  

findings on the new soil.

Meanwhile, a local cricket player hit his double ton in sports 

news last night.

The lead engineer of the project team is highly respected.

"""
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 Tokenize the Article

# Tokenizes the article text into individual words or tokens.

tokens = word_tokenize(article_text)

 Synonyms Detection

# Prints the header for synonym detection.

print("Synonyms Detection:")

# Iterates over the first 5 tokens.

for token in tokens[:5]:

    # Retrieves WordNet synsets for the token.

    synsets = wn.synsets(token)

    # Initializes a set to collect synonyms.

    synonyms = set()

    # Iterates over each synset to gather synonyms.

    for synset in synsets:

        for lemma in synset.lemmas():

            synonyms.add(lemma.name())

    #  Prints the synonyms if found, otherwise, it indicates 

none were found.

    if synonyms:

        print(f"Synonyms for '{token}': {', '.join(synonyms)}")

    else:

        print(f"No synonyms found for '{token}'")

Synonyms Detection:

No synonyms found for 'The'

Synonyms for 'lead': wind, steer, lead-in, Pb, lede, jump-

er_lead, extend, trail, guide, moderate, head, booster_cable, 

precede, tip, result, jumper_cable, confidential_information, 
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pass, principal, atomic_number_82, run, track, lead_story, 

take, pencil_lead, leading, tether, contribute, star, hint,  

direct, conduct, leave, conduce, lead, top, go, spark_advance, 

leash, chair Synonyms for 'engineer': organize, mastermind, 

engineer, technologist, direct, orchestrate, applied_scientist, 

railroad_engineer, locomotive_engineer, engine_driver, organize

Synonyms for 'in': inch, IN, Indiana, In, inward, inwards, in, 

indium, atomic_number_49, Hoosier_State

No synonyms found for 'the'

 Antonyms Detection

# Prints the header for antonym detection.

print("\nAntonyms Detection:")

# Iterates over each token.

for token in tokens:

    # Retrieves WordNet synsets for the token.

    synsets = wn.synsets(token)

    # Initializes a set to collect antonyms.

    antonyms = set()

    # Iterates over each synset to gather antonyms.

    for synset in synsets:

        for lemma in synset.lemmas():

            # Checks for antonyms and adds them to the set.

            if lemma.antonyms():

                 antonyms.update(ant.name() for ant in lemma.

antonyms())
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    # Prints the antonyms if found.

    if antonyms:

        print(f"Antonyms for '{token}': {', '.join(antonyms)}")

Antonyms Detection:

Antonyms for 'lead': follow, deficit

Antonyms for 'new': worn, old

Antonyms for 'has': refuse, lack, abstain

Antonyms for 'made': unmake, unmade, break

Antonyms for 'is': differ

Antonyms for 'looking': back

Antonyms for 'potential': actual

Antonyms for 'findings': lose

Antonyms for 'on': off

Antonyms for 'new': worn, old

Antonyms for 'soil': clean

Antonyms for 'local': express, national, general

Antonyms for 'hit': miss

Antonyms for 'double': multivalent, single, univalent

Antonyms for 'last': first

Antonyms for 'night': day

Antonyms for 'lead': follow, deficit

Antonyms for 'is': differ

Antonyms for 'respected': disesteem, disrespect

 Homophones Detection (Alternate Approach)

print("\nHomophones Detection:")

# Homophones are generally detected using phonetic algorithms 

or external libraries like `fuzzy` or `PyDictionary`.

# Here we might use a simple custom method based on pronunciation 

or external data sources.
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# Defines a function to check if two words are homophones based 

on a simplified rule.

def is_homophone(word1, word2):

    return word1.lower() == word2.lower() and word1 != word2

# Example list of homophone pairs.

homophones_list = [('lead', 'led'), ('bare', 'bear'), ('pair', 

'pear')]

# Iterates over each token.

for token in tokens:

    #  Finds homophones for the current token based on the  

example list.

     homophones = [pair[1] for pair in homophones_list if 

pair[0] == token.lower()]

    # Prints homophones if found.

    if homophones:

         print(f"Homophones for '{token}': {', 

'.join(homophones)}")

Homophones Detection:

Homophones for 'lead': led

Homophones for 'lead': led

 Homographs Detection

# Prints the header for homograph detection.

print("\nHomographs Detection:")

# Iterates over each token.

for token in tokens:

    # Retrieves WordNet synsets for the token.

    synsets = wn.synsets(token)
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    # Initializes a set to collect part-of-speech tags.

    pos_tags = set()

    # Adds POS tags for each synset to the set.

    for synset in synsets:

        pos_tags.add(synset.pos())

     # Prints if the token has multiple POS tags, indicating it 

is a homograph.

    if len(pos_tags) > 1:

         print(f"'{token}' is a homograph with POS tags: {', 

'.join(pos_tags)}")

Homographs Detection:

'lead' is a homograph with POS tags: v, n

'engineer' is a homograph with POS tags: v, n

'in' is a homograph with POS tags: r, s, n

'new' is a homograph with POS tags: s, a, r

'bridge' is a homograph with POS tags: v, n

'project' is a homograph with POS tags: v, n

'has' is a homograph with POS tags: v, n

'made' is a homograph with POS tags: v, s, a

'team' is a homograph with POS tags: v, n

'now' is a homograph with POS tags: r, n

'looking' is a homograph with POS tags: v, s, n

'potential' is a homograph with POS tags: s, a, n

'impacts' is a homograph with POS tags: v, n

'findings' is a homograph with POS tags: v, n

'on' is a homograph with POS tags: a, r

'new' is a homograph with POS tags: s, a, r

'soil' is a homograph with POS tags: v, n

'Meanwhile' is a homograph with POS tags: r, n

'local' is a homograph with POS tags: a, n
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'cricket' is a homograph with POS tags: v, n

'hit' is a homograph with POS tags: v, n

'double' is a homograph with POS tags: a, r, n, s, v

'in' is a homograph with POS tags: r, s, n

'sports' is a homograph with POS tags: v, n

'last' is a homograph with POS tags: a, r, n, s, v

'lead' is a homograph with POS tags: v, n

'engineer' is a homograph with POS tags: v, n

'project' is a homograph with POS tags: v, n

'team' is a homograph with POS tags: v, n

'respected' is a homograph with POS tags: v, s

 Polysemy Detection

# Prints the header for polysemy detection.

print("\nPolysemy Detection:")

# Iterates over each token.

for token in tokens:

    # Retrieves WordNet synsets for the token.

    synsets = wn.synsets(token)

     # Prints if the token has more than one synset, indicating 

multiple meanings.

    if len(synsets) > 1:

        print(f"'{token}' has multiple meanings.")

Polysemy Detection:

'lead' has multiple meanings.

'engineer' has multiple meanings.

'in' has multiple meanings.

'new' has multiple meanings.

'bridge' has multiple meanings.
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'project' has multiple meanings.

'has' has multiple meanings.

'made' has multiple meanings.

'a' has multiple meanings.

'breakthrough' has multiple meanings.

'team' has multiple meanings.

'is' has multiple meanings.

'now' has multiple meanings.

'looking' has multiple meanings.

'at' has multiple meanings.

'potential' has multiple meanings.

'impacts' has multiple meanings.

'findings' has multiple meanings.

'on' has multiple meanings.

'new' has multiple meanings.

'soil' has multiple meanings.

'Meanwhile' has multiple meanings.

'a' has multiple meanings.

'local' has multiple meanings.

'cricket' has multiple meanings.

'player' has multiple meanings.

'hit' has multiple meanings.

'double' has multiple meanings.

'ton' has multiple meanings.

'in' has multiple meanings.

'sports' has multiple meanings.

'news' has multiple meanings.

'last' has multiple meanings.

'night' has multiple meanings.

'lead' has multiple meanings.

'engineer' has multiple meanings.

'project' has multiple meanings.
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'team' has multiple meanings.

'is' has multiple meanings.

'highly' has multiple meanings.

'respected' has multiple meanings.

 Hyponyms of a Given Word

# Defines a function to find hyponyms for a given word.

def find_hyponyms(word):

    # Initializes a set to collect hyponyms.

    hyponyms = set()

    # Retrieves WordNet synsets for the given word.

    synsets = wn.synsets(word)

    # Iterates over each synset to find hyponyms.

    for synset in synsets:

        for hyponym in synset.hyponyms():

            for lemma in hyponym.lemmas():

                # Adds hyponyms to the set.

                hyponyms.add(lemma.name())

    # Returns the set of hyponyms.

    return hyponyms

 Categorize the Article Based on Hyponyms 
of Given Categories

Listing 6-4 contains the code for this purpose

Listing 6-4. Categorize Articles

# Defines a function to categorize terms in the text based on 

hyponyms of given categories.

def categorize_article(text, category_terms):
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    # Tokenizes and lowercases the text.

    tokens = word_tokenize(text.lower())

    # Initializes a dictionary to store categorized terms.

    categorized_terms = {term: [] for term in category_terms}

    # Iterates over each token.

    for token in tokens:

        # Checks each category term for matching hyponyms.

        for term in category_terms:

            hyponyms = find_hyponyms(term)

            if token in hyponyms:

                 # Appends the token to the corresponding 

category.

                categorized_terms[term].append(token)

    # Returns the dictionary of categorized terms.

    return categorized_terms

# Categorizes terms in the article text based on specified  

general categories.

categories = categorize_article(article_text, ["scientist", 

"research", "sports", "team", "player"])

# Print out the categorized terms or a message if none 

are found.

for category, items in categories.items():

    if items:

        print(f"Category '{category}': {', '.join(items)}")

    else:

         print(f"Category '{category}': No matching 

terms found")

Category 'scientist': No matching terms found

Category 'research': No matching terms found
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Category 'sports': No matching terms found

Category 'team': No matching terms found

Category 'player': lead, lead

6.4.8  Integration into Text Processing Pipelines

Any number of NLP techniques can be combined into a cohesive and 

convenient workflow pipeline to handle complex tasks more efficiently. By 

modularizing multiple functions, such as POS tagging, NER, and polysemy 

detection, we can create a comprehensive system (pipeline) that helps 

process and analyze text in a structured manner.

Such modular workflow integration pipelines permit seamless data 

flow between multiple stages of text analysis. Such workflow pipelines 

ensure that each next text processing step is built upon the results of the 

previous ones. Professional NLP application developers often use such 

pipelines. Next, Listing 6-5 demonstrates a simple text processing pipeline 

in just three steps.

 Demonstrating Text Preprocessing Pipelines Using POS 
Tagging, NER, and Polysemy

Listing 6-5. A Simple Text Processing Pipeline

import nltk

from nltk.corpus import wordnet as wn

from nltk.tokenize import word_tokenize

from nltk import pos_tag, ne_chunk

# Ensure necessary nltk resources are downloaded.

nltk.download('punkt')

nltk.download('averaged_perceptron_tagger')

nltk.download('maxent_ne_chunker')
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nltk.download('words')

nltk.download('wordnet')

# Function for POS tagging.

def pos_tagging(tokens):

    return pos_tag(tokens)

# Function for NER.

def named_entity_recognition(pos_tags):

    return ne_chunk(pos_tags)

# Function for polysemy.

def find_polysemy(word):

    synsets = wn.synsets(word)

    return len(synsets) > 1

# Function to run the complete text processing pipeline.

def text_processing_pipeline(text):

    # Step 1: Tokenize the text

    tokens = word_tokenize(text)

    # Step 2: POS tagging

    pos_tags = pos_tagging(tokens)

    print("POS Tagging:")

    for word, tag in pos_tags:

        print(f"{word}: {tag}")

    # Step 3: Named Entity Recognition

    ner_tree = named_entity_recognition(pos_tags)

    print("\nNamed Entity Recognition:")

    for subtree in ner_tree:

        if hasattr(subtree, 'label'):

             print(f"{' '.join(c[0] for c in subtree)}:  

{subtree.label()}")
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    # Step 4: Polysemy detection

    print("\nPolysemy Detection:")

    for token in tokens:

        if find_polysemy(token):

            print(f"'{token}' has multiple meanings.")

# Sample article text.

article_text = """

The lead engineer for the new bridge project made a break-

through in New York. The team is now looking at the potential 

impacts of their findings on the new soil. Meanwhile, Virat 

Kohli hit his double ton in sports news last night. The lead 

engineer of the project team is highly respected.

"""

# Run the complete text processing pipeline.

text_processing_pipeline(article_text)

OUTPUT:

POS Tagging:

The: DT

lead: NN

engineer: NN

for: IN

the: DT

new: JJ

bridge: NN

project: NN

made: VBD

a: DT

breakthrough: NN

in: IN
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New: NNP

York: NNP

.: .

The: DT

team: NN

is: VBZ

now: RB

looking: VBG

at: IN

the: DT

potential: JJ

impacts: NNS

of: IN

their: PRP$

findings: NNS

on: IN

the: DT

new: JJ

soil: NN

.: .

Meanwhile: RB

,: ,

Virat: NNP

Kohli: NNP

hit: VBD

his: PRP$

double: JJ

ton: NN

in: IN

sports: NNS

news: NN
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last: JJ

night: NN

.: .

The: DT

lead: JJ

engineer: NN

of: IN

the: DT

project: NN

team: NN

is: VBZ

highly: RB

respected: VBN

.: .

Named Entity Recognition:

New York: GPE

Virat Kohli: PERSON

Polysemy detection:

'lead' has multiple meanings.

'engineer' has multiple meanings.

'new' has multiple meanings.

'bridge' has multiple meanings.

'project' has multiple meanings.

'made' has multiple meanings.

'a' has multiple meanings.

'breakthrough' has multiple meanings.

'in' has multiple meanings.

'New' has multiple meanings.

'team' has multiple meanings.

'is' has multiple meanings.
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'now' has multiple meanings.

'looking' has multiple meanings.

'at' has multiple meanings.

'potential' has multiple meanings.

'impacts' has multiple meanings.

'findings' has multiple meanings.

'on' has multiple meanings.

'new' has multiple meanings.

'soil' has multiple meanings.

'Meanwhile' has multiple meanings.

'hit' has multiple meanings.

'double' has multiple meanings.

'ton' has multiple meanings.

'in' has multiple meanings.

'sports' has multiple meanings.

'news' has multiple meanings.

'last' has multiple meanings.

'night' has multiple meanings.

'lead' has multiple meanings.

'engineer' has multiple meanings.

'project' has multiple meanings.

'team' has multiple meanings.

'is' has multiple meanings.

'highly' has multiple meanings.

'respected' has multiple meanings.

6.5  Chapter Recap

This chapter emphasizes the importance of understanding the structure 

and meaning of language, a key feature for the effective processing of hu-

man language.
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The classification of words based on grammar, such as nouns or verbs, 

can be achieved through techniques like POS tagging. For this, Python 

tools such as NLTK and spaCy are utilized. Various parsing techniques, 

such as dependency parsing and constituency parsing, are explored in 

this chapter. Dependency parsing determines the relationship between 

words, whereas constituency parsing breaks the sentence into component 

 phrases. Practical examples and challenges in syntactic analysis are pre-

sented to deepen understanding.

The latter part of the chapter dealt with semantics analysis and various 

methods to extract contextual meaning from text. One such technique is 

chunking, which is a method to group related words into meaningful units. 

The concepts of NER are presented for identifying names, places, and 

other specific entities in text. For words with multiple definitions, WSD 

helps in understanding their correct meaning. The importance of vari-

ous matrix-based methods, such as term-document matrixes and TF–IDF, 

are also described to show their role in measuring word importance and 

relevance. Numerous coding tutorials are also included in this chapter to 

showcase the actual implementation of these techniques.

Concepts of lexical semantics are also discussed to examine the word 

relationships, such as synonyms, antonyms, homophones, homographs, 

polysemy, and hyponyms. It is very important to detect these relationships 

along with the integration of them into text processing pipelines.

A combination of syntactic and semantic techniques is indispensable 

for solving real-world problems concerning the structure and meaning of 

language. A classic case is machine translation, in which the correctness 

of syntax is crucial for grammatically accurate sentences in the target lan-

guage. Semantics, on the other hand, assurances that the meaning of the 

original text is conserved.

The primary aim of studying these concepts is to infer and generate 

meaningful text from machine learning algorithms. This chapter concluded 

with some hands-on tutorials. The next chapter explains pragmatic analysis 

in NLP. Stay tuned!
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CHAPTER 7

Advanced Pragmatic 
Techniques and 
Specialized Topics 
in NLP

7.1  Why You Should Read This Chapter

Pragmatic analysis in NLP delves into understanding language in context. 

It goes beyond the literal meanings of words to interpret the intended 

message. Pragmatic analysis aims to discern the correct speaker’s intent 

and the social or situational context from the input speech or text, taking 

into account factors such as speaker intent, tone, and the listener’s 

perspective. Pragmatic analysis is essential for almost every serious NLP 

task, including more common ones like sentiment analysis, chatbot 

development, and conversational AI. In short, pragmatic analysis is 

responsible for the accurate interpretation of spoken or written text while 

considering the contexts of both leister and speaker.

Pragmatic analysis enables NLP applications to grasp the implied 

meanings, sarcasm, and indirect requests that are not directly conveyed 
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by the literal meanings of words but are understood through context. 

NLP applications integrated with pragmatic analysis are closely able to 

mimic human understanding. It leads to more natural and context-aware 

interactions between humans and machines (computers). Pragmatic 

analysis plays a pivotal role in NLP tasks dealing with dialogue systems 

and machine translation. Without learning pragmatic analysis, your aim of 

gaining any serious NLP skills is far from complete.

So far, you have learned about lexical, syntactic analysis, and semantic 

analysis. How do they relate to pragmatic analysis?

Lexical, syntactic, and semantic analyses are foundational steps that 

feed into pragmatic analysis in NLP. Lexical analysis is concerned with 

breaking down the text into words or tokens. After that, the syntactic 

analysis step categorizes these tokens into grammatical structures to 

enable grammatically correct sentence formation. Semantic analysis 

interprets only the literal meaning of these sentence structures while 

concentrating on the relationships between words. Pragmatic analysis is 

the final step, which incorporates input from the previous three layers and 

integrates context, speaker intent, and situational factors to accurately 

interpret the intended meaning of the text. Together, these four steps form 

a hierarchy, as shown in Figure 7-1. This chapter touches on disclosure 

integration along with the nuances of pragmatic analysis.

Figure 7-1. The general process of most NLP applications
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7.2  Overview of Pragmatic 
Analysis Techniques

Let’s discuss pragmatic analysis key concepts. We begin with distributional 

semantics and word embeddings, which are useful in understanding how 

words interact with one another in dynamic contexts. We study latent 

semantic analysis along with its real-world applications and practical 

applications to help us in the extraction of meaningful word relationships 

from large datasets. Word embeddings, such as Word2Vec, GloVe, CBOW, 

and skip-gram, are fundamental in representing words in continuous vector 

spaces. BERT and GPT further enhance word embeddings by integrating 

the surrounding context. It allows NLP algorithms to capture delicate shifts 

in word meanings. Topic modeling and techniques like Latent Dirichlet 

allocation help identify underlying themes in the text, which is pivotal to 

pragmatic analysis, especially while dealing with large corpora.

Finally, techniques such as ensemble methods and word similarity 

help us further improve the effectiveness of pragmatic analysis. They 

combine different models and measure contextual word relationships. 

Toward the end of this section, we introduce coreference resolution and 

its integration into NLP pipelines to further establish the importance of 

recognizing references.

7.3  Discourse Integration in NLP

In discourse integration, we keep track of an ongoing conversation 

to ensure that all the sentences fit together properly such that, as a 

collection, they make sense. In discourse integration, the focus is not 

on understanding just one sentence at a time. Before trying to make 

any sense, we integrate all the sentences and look at how each sentence 

connects with others. After that, we try to ensure that, together as a set, 

they make sense.
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Let’s try to solidify this concept with an example of a virtual assistant 

(e.g., Amazon’s Alexa). You instruct your virtual assistant, “Turn on the 

TV,” and then say, “Also, make it louder.” The second sentence doesn’t 

explicitly use the word “TV,” but the assistant still analyzes what you are 

talking about. This is discourse integration; we are trying to make sense 

of this short conversation in totality. Without this, the assistant might get 

confused as we didn’t mention “TV” in the second sentence.

In real life, we use discourse integration all the time. If your friend 

says, “I’m hungry,” and then, “Let’s get pizza,” you know both sentences 

are related. In a similar fashion, discourse integration techniques help 

machines to follow and respond to conversations, just like humans. We 

often use pronouns (he, she, it) in our regular conversations. Discourse 

integration techniques used in NLP applications help to resolve how 

these pronouns are linked to the correct noun previously mentioned 

in the discourse. It also helps to interpret implied meanings and how 

context dynamically changes during a conversation. In another example, 

in automated customer service applications (chatbots), discourse 

integration helps the application to track the user’s queries even over long 

conversations and respond in a relevant manner.

7.3.1  Techniques for Discourse Integration

The key techniques under discourse integration include coreference 

resolution, anaphora resolution, coherence modeling, rhetorical structure 

theory, discourse parsing, entity tracking, lexical chains, topic modeling, 

cohesion analysis, and temporal relation identification.

Coreference resolution enables NLP applications to connect the dots 

between words and their referents. For example, it ensures that “he,” “she,” 

or “it” connect to the right person or thing. For instance, in a news article, 

if it says, “Mary entered the class. She sat down,” coreference resolution’s 

job is to link “She” back to Mary. Anaphora resolution, on the other hand, 

zooms in on backward references. It resolves phrases like “this” or “that” to 
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their earlier mentions. For example, in the sentence, “I bought a new car. 

This is my favorite machine,” anaphora resolution links “this” to “car.”

Coherence modeling is like an invisible thread that helps keep a 

conversation or story connected and flowing smoothly. Imagine you’re 

reading a book, and one chapter describes a character embarking on 

an adventure. Then, in the next chapter, it addresses the challenges the 

character faces. Coherence modeling helps link those chapters together so 

you can follow the journey without getting lost. For example, in a chatbot, 

if you ask, “What’s the weather today?” and then, “Should I bring an 

umbrella?” coherence modeling helps the system understand that both 

questions are related to the weather.

Let’s discuss the next technique with an example. In an essay, the 

opening paragraph describes the dangers of climate change and further 

explains possible solutions. Rhetorical structure theory (RST) reveals 

that the second part describes the first. RST delves to explain to us how 

different parts of a conversation or text are related. The RST role comes 

into play in explaining language constructs such as cause and effect, 

contrast, or explanation.

Let’s study the case of a conversation between two friends. The first 

person might ask a question, and the other gives an answer. Discourse 

parsing is the technique that comes into play in separating these into 

“question” and “answer” units. Discourse parsing is equivalent to 

generating a blueprint of a conversation or text. It breaks the conversation 

or input text down into smaller, meaningful units to see how they work 

together. There are a couple of additional techniques related to discourse 

integration that are useful if you are aware of them. They are briefly 

explained in this chapter, and we link each technique with a real-world 

example for better understanding.

Entity tracking deals with keeping track of nouns, like people or 

things, throughout a story. For example, in a suspense story, it helps if you 

properly remember all the suspects and their actions that were mentioned 

in previous chapters. So, if the first chapter discusses a suspect named 
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John and the other chapter talks about Alex’s friend, Mary, in this example, 

the job of entity tracking is to connect these details throughout the story so 

that machines have a clear understanding of the narrative.

Let’s examine a different use case. You are reading a story about a 

family dog. Lexical chain techniques are used to connect all the related 

words like “dog,” “puppy,” and “pet” that may have mentioned different 

parts of the book. Keeping this link helps you to follow along without 

getting confused about what’s being talked about. Lexical chains link 

connected words throughout the speech or input text to make sure 

everything sticks to the same topic. We use another example to discuss 

the topic modeling technique. Suppose you’re reading a few news articles 

online. Topic modeling can group all the stories about climate change 

together. This can help you to easily find and read all the articles about the 

same topic.

In another instance, if an article starts by discussing a problem and 

then transitions to a solution, cohesion analysis is the technique that helps 

the machine ensure the changeover is clear and logical. Finally, Temporal 

relation identification helps to arrange events (in speech or text) in the 

order they occurred. In a history book, it helps to place events like wars 

and revolutions in chronological order. For example, it would indicate that 

World War I preceded World War II.

We discussed quite a few techniques in this section. We may not detail 

each one of them due to space constraints.

7.3.2  Demonstrating Techniques 
for Discourse Integration

Let’s go over all the techniques and use Python code to demonstrate these 

processes.
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 Coreference Resolution (Code Demo)

Most of these techniques use popular NLP libraries in Python, such as 

spaCy, NLTK, Transformers, and Gensim, among others.

Here’s a brief idea of how each technique can be demonstrated 

with code.

# Install the package needed for coreference resolution.

# Uncomment it if coreferee is not installed on your system.

!python -m pip install coreferee

# Installs the English coreference resolution model for the 

coreferee package.

!python -m coreferee install en

# Download the large English model ('en_core_web_lg') 

for spaCy.

# This model includes word vectors and is more accurate for NER 

and POS tagging.

# It's larger and more powerful than the smaller models lke 

'en_core_web_sm'), but it may take up large memory.

# We have not loaded it in the main code body but without this 

step, the code was throwing error.

# So it's a required step.

!python -m spacy download en_core_web_lg

# Code to ignore warnings.

import warnings

warnings.filterwarnings("ignore", category=FutureWarning)

# Import the required package.

import spacy

# Load the transformer-based English model.

# As of now let's use it. We will take it up in detail in the 

later chapters.

nlp = spacy.load('en_core_web_trf')
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"""

Add 'coreferee' to the pipeline.

'coreferee' is a spaCy extension that enables the 

identification and linking of coreferences in a text.

Adding it to the pipeline so that coreference resolution can be 

performed after other NLP tasks like tokenization and parsing.

"""

nlp.add_pipe('coreferee')

# Create the sample text for demo.

sample_doc = nlp(""" Although she was very busy at office work, 

Mary felt she had had enough of it.

                      he and her spouse decided they needed to 

go on a holiday.

                      They travelled by train to France 

because they had enough friends in the 

country.""")

print("")

print("OUTPUT \n")

sample_doc._.coref_chains.print()

OUTPUT

0: she(2), Mary(10), she(12), She(20), her(22)

1: work(8), it(17)

2: [She(20); spouse(23)], they(25), They(34), they(41)

3: France(39), country(47)

The output does not appear to be easy to understand. The first line 

of the production (indexed 0) tells us that the pronouns she(2), she(12), 

She(20), and her(22) refer to the same name, ‘Mary(10).’ Similarly, the 

second line (indexed 1) makes us understand that it(17) stands for 

work(8). At index 2 position, they(25), They(34), they(41) refer to [She(20); 
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spouse(23)]. Finally, at index 3, country(47) stands for France(39). Notice 

that in this output, all the pronouns in the sample_doc are resolved to their 

proper nouns (coreference resolution process).

 Rhetorical Structure Theory (Code Demo)

!pip install stanza

import stanza

# Download and set up the Stanford NLP mode.

stanza.download('en')

{"model_id":"b1022cc610b04d679f12c5211b381398","version_

major":2,"version_minor":0}

2024-09-08 16:28:37 INFO: Downloaded file to C:\Users\

Shailendra Kadre\stanza_resources\resources.json

2024-09-08 16:28:37 INFO: Downloading default packages for 

language: en (English) ...

2024-09-08 16:28:38 INFO: File exists: C:\Users\Shailendra 

Kadre\stanza_resources\en\default.zip

2024-09-08 16:28:40 INFO: Finished downloading models and saved 

to C:\Users\Shailendra Kadre\stanza_resources

# Initialize a Stanza Pipeline for processing English text.

nlp = stanza.Pipeline(lang='en', processors='tokenize,mwt,pos, 

depparse, lemma')

2024-09-08 16:30:35 INFO: Checking for updates to resources.

json in case models have been updated.  Note: this behavior 

can be turned off with download_method=None or download_

method=DownloadMethod.REUSE_RESOURCES

{"model_id":"aaa69eecc06847fc9c18c0cbd0e1c88f","version_

major":2,"version_minor":0}

2024-09-08 16:30:36 INFO: Downloaded file to C:\Users\

Shailendra Kadre\stanza_resources\resources.json
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2024-09-08 16:30:36 INFO: Loading these models for language: en 

(English):

=================================

| Processor | Package           |

---------------------------------

| tokenize  | combined          |

| mwt       | combined          |

| pos       | combined_charlm   |

| lemma     | combined_nocharlm |

| depparse  | combined_charlm   |

=================================

2024-09-08 16:30:36 INFO: Using device: cpu

2024-09-08 16:30:36 INFO: Loading: tokenize

2024-09-08 16:30:36 INFO: Loading: mwt

2024-09-08 16:30:36 INFO: Loading: pos

2024-09-08 16:30:36 INFO: Loading: lemma

2024-09-08 16:30:36 INFO: Loading: depparse

2024-09-08 16:30:37 INFO: Done loading processors!

# Process a text

doc = nlp("Your example sentence goes here.")

for sentence in doc.sentences:

    print("Tokens:", [word.text for word in sentence.words])

    print("POS Tags:", [word.pos for word in sentence.words])

     print("Dependencies:", [(word.text, word.deprel) for word 

in sentence.words])

Tokens: ['Your', 'example', 'sentence', 'goes', 'here', '.']

POS Tags: ['PRON', 'NOUN', 'NOUN', 'VERB', 'ADV', 'PUNCT']

Dependencies: [('Your', 'nmod:poss'), ('example', 'compound'), 

('sentence', 'nsubj'), ('goes', 'root'), ('here', 'advmod'), 

('.', 'punct')]

# Create the sample text for demo.
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sample_doc = nlp(""" Although she was very busy at office work, 

Mary felt she had had enough of it.

                      She and her spouse decided they needed to 

go on a holiday.

                      They travelled by train to France 

because they had enough friends in the 

country.""")

# Process the text

doc = nlp(sample_doc)

# Print out tokens, POS tags, and dependency relations.

for sentence in doc.sentences:

     print("Sentence:", " ".join([word.text for word in 

sentence.words]))

    print("Tokens:", [word.text for word in sentence.words])

    print("POS Tags:", [word.pos for word in sentence.words])

     print("Dependencies:", [(word.text, word.deprel) for word 

in sentence.words])

    print("-----")

Sentence: Although she was very busy at office work , Mary felt 

she had had enough of it .

Tokens: ['Although', 'she', 'was', 'very', 'busy', 'at', 

'office', 'work', ',', 'Mary', 'felt', 'she', 'had', 'had', 

'enough', 'of', 'it', '.']

POS Tags: ['SCONJ', 'PRON', 'AUX', 'ADV', 'ADJ', 'ADP', 'NOUN', 

'NOUN', 'PUNCT', 'PROPN', 'VERB', 'PRON', 'AUX', 'VERB', 'ADJ', 

'ADP', 'PRON', 'PUNCT']

Dependencies: [('Although', 'mark'), ('she', 'nsubj'), ('was', 

'cop'), ('very', 'advmod'), ('busy', 'advcl'), ('at', 'case'), 

('office', 'compound'), ('work', 'obl'), (',', 'punct'), 
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('Mary', 'nsubj'), ('felt', 'root'), ('she', 'nsubj'), ('had', 

'aux'), ('had', 'ccomp'), ('enough', 'obj'), ('of', 'case'), 

('it', 'obl'), ('.', 'punct')]

-----

Sentence: She and her spouse decided they needed to go on a 

holiday .

Tokens: ['She', 'and', 'her', 'spouse', 'decided', 'they', 

'needed', 'to', 'go', 'on', 'a', 'holiday', '.']

POS Tags: ['PRON', 'CCONJ', 'PRON', 'NOUN', 'VERB', 'PRON', 

'VERB', 'PART', 'VERB', 'ADP', 'DET', 'NOUN', 'PUNCT']

Dependencies: [('She', 'nsubj'), ('and', 'cc'), ('her', 

'nmod:poss'), ('spouse', 'conj'), ('decided', 'root'), ('they', 

'nsubj'), ('needed', 'ccomp'), ('to', 'mark'), ('go', 'xcomp'), 

('on', 'case'), ('a', 'det'), ('holiday', 'obl'), ('.', 

'punct')]

-----

Sentence: They travelled by train to France because they had 

enough friends in the country .

Tokens: ['They', 'travelled', 'by', 'train', 'to', 'France', 

'because', 'they', 'had', 'enough', 'friends', 'in', 'the', 

'country', '.']

POS Tags: ['PRON', 'VERB', 'ADP', 'NOUN', 'ADP', 'PROPN', 

'SCONJ', 'PRON', 'VERB', 'ADJ', 'NOUN', 'ADP', 'DET', 'NOUN', 

'PUNCT']

Dependencies: [('They', 'nsubj'), ('travelled', 'root'), ('by', 

'case'), ('train', 'obl'), ('to', 'case'), ('France', 'obl'), 

('because', 'mark'), ('they', 'nsubj'), ('had', 'advcl'), 

('enough', 'amod'), ('friends', 'obj'), ('in', 'case'), ('the', 

'det'), ('country', 'nmod'), ('.', 'punct')]

-----
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We take the middle sentence for elaborations on the output.

• Sentence: “She and her spouse decided they needed to 

go on a holiday.”

• Tokens and POS tags: [‘She’, ‘and’, ‘her’, ‘spouse’, 

‘decided’, ‘they’, ‘needed’, ‘to’, ‘go’, ‘on’, ‘a’, ‘holiday’, ‘.’] 

POS Tags: [‘PRON’, ‘CCONJ’, ‘PRON’, ‘NOUN’, ‘VERB’, 

‘PRON’, ‘VERB’, ‘PART’, ‘VERB’, ‘ADP’, ‘DET’, ‘NOUN’, 

‘PUNCT’] PRON (Pronoun): ‘She’, ‘her’, ‘they’ CCONJ 

(Coordinating Conjunction): ‘and’ NOUN (Noun): 

‘spouse’, ‘holiday’ VERB (Verb): ‘decided’, ‘needed, 

‘go’ PART (Particle): ‘to’ ADP (Adposition): ‘on’ DET 

(Determiner): ‘a’ PUNCT (Punctuation): ‘.’

• Dependencies: (‘She’, ‘nsubj’): ‘She’ is the nominal 

subject of the main verb ‘decided’. (‘and’, ‘cc’): ‘and’ 

is a coordinating conjunction linking ‘She’ and ‘her 

spouse’. (‘her’, ‘nmod:poss’): ‘her’ is a possessive 

modifier for ‘spouse’. (‘spouse’, ‘conj’): ‘spouse’ is a 

conjunct connected to ‘She’ by ‘and’. (‘decided’, ‘root’): 

‘decided’ is the main verb (root) of the sentence. 

(‘they’, ‘nsubj’): ‘they’ is the subject of the embedded 

verb ‘needed’. (‘needed’, ‘ccomp’): ‘needed’ is a clausal 

complement of ‘decided’. (‘to’, ‘mark’): ‘to’ is a marker 

for the infinitive verb ‘go’. (‘go’, ‘xcomp’): ‘go’ is an open 

clausal complement of ‘needed’. (‘on’, ‘case’): ‘on’ is a 

preposition marking the case of ‘holiday’. (‘a’, ‘det’): ‘a’ is 

a determiner for ‘holiday’. (‘holiday’, ‘obl’): ‘holiday’ is 

the oblique object of the preposition ‘on’. (‘.’, ‘punct’): ‘.’ is 

punctuation marking the end of the sentence.
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Having this information in your folds, you can now apply RST 

principles and manually complete the process of RST. More advanced 

tools are available to complete the RST process for you. Stanza provides 

valuable syntactic information. However, an end-to-end RST analysis 

would need additional steps or tools to explicitly categorize and recognize 

the rhetorical relationships between different text parts. To this date, a 

Python library for RST is unavailable to our knowledge.

 Discourse Parsing (Code Demo)

A direct discourse parsing library is currently unavailable in Python. 

Professionals who write code often use advanced NLP libraries like spaCy 

or AllenNLP, along with deep learning techniques. We stick to spaCy for a 

simplified demo. The code is based on the following steps.

 1. Load the spaCy model.

 – Initialize spaCy’s English language model.

 2. Define sample text.

 – Set a string variable with the sample text.

 3. Process text.

 – Use spaCy to analyze the sample text.

 – Split the text into sentences.

 4. Define a function to extract discourse information.

 – Do the following for each sentence in the pro-

cessed text.

 a. Print the sentence.

 b. Extract and print named entities (if any).
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 c.  Extract and print syntactic dependencies for 

each token.

 d.  Infer basic discourse relations based on 

keywords.

• If the sentence contains the word “because”

 – Record that this sentence provides a 

reason for the previous sentence.

• If the sentence contains the word 

“although”

 – Record that this sentence contrasts 

with the previous sentence.

 5. Call a function to extract and display discourse 

information.

 – Print inferred discourse relations.

!python -m spacy download en_core_web_sm

import spacy

# Load SpaCy's English model.

nlp = spacy.load('en_core_web_sm')

# Sample text.

text = """

Although she was very busy with office work, Mary felt she had 

had enough of it.

She and her spouse decided they needed to go on a holiday.

They travelled by train to France because they had enough 

friends in the country.

"""
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# Process the text with SpaCy.

doc = nlp(text)

# Function to extract and display discourse-like information

def extract_discourse_info(doc):

    sentences = list(doc.sents)

    relations = []

    for i, sent in enumerate(sentences):

        print(f"Sentence {i+1}: {sent.text}")

        # Extract named entities.

         entities = [(ent.text, ent.label_) for ent in 

sent.ents]

        if entities:

            print("  Named Entities:", entities)

        # Extract syntactic dependencies

         dependencies = [(token.text, token.dep_, token.head.

text) for token in sent]

        print("  Dependencies:", dependencies)

        # Basic inference of discourse relations.

        if i > 0:

            previous_sent = sentences[i-1]

            if "because" in sent.text.lower():

                 relations.append(f"Sentence {i+1} provides a 

reason for Sentence {i}")

            elif "although" in sent.text.lower():

                 relations.append(f"Sentence {i+1} contrasts 

with Sentence {i}")

    return relations
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# Extract and print discourse information.

relations = extract_discourse_info(doc)

print("\nInferred Discourse Relations:")

for relation in relations:

    print(relation)

Sentence 1:

  Dependencies: [('\n', 'dep', '\n')]

Sentence 2: Although she was very busy with office work, Mary 

felt she had had enough of it.

  Named Entities: [('Mary', 'PERSON')]

  Dependencies: [('Although', 'mark', 'was'), ('she', 'nsubj', 

'was'), ('was', 'advcl', 'felt'), ('very', 'advmod', 'busy'), 

('busy', 'acomp', 'was'), ('with', 'prep', 'busy'), ('office', 

'compound', 'work'), ('work', 'pobj', 'with'), (',', 'punct', 

'felt'), ('Mary', 'nsubj', 'felt'), ('felt', 'ROOT', 'felt'), 

('she', 'nsubj', 'had'), ('had', 'aux', 'had'), ('had', 

'ccomp', 'felt'), ('enough', 'dobj', 'had'), ('of', 'prep', 

'enough'), ('it', 'pobj', 'of'), ('.', 'punct', 'felt'), ('\n', 

'dep', '.')]

Sentence 3: She and her spouse decided they needed to go on a 

holiday.

  Named Entities: [('a holiday', 'DATE')]

   Dependencies: [('She', 'nsubj', 'decided'), ('and', 'cc', 

'She'), ('her', 'poss', 'spouse'), ('spouse', 'conj', 

'She'), ('decided', 'ROOT', 'decided'), ('they', 'nsubj', 

'needed'), ('needed', 'ccomp', 'decided'), ('to', 'aux', 

'go'), ('go', 'xcomp', 'needed'), ('on', 'prep', 'go'), ('a', 

'det', 'holiday'), ('holiday', 'pobj', 'on'), ('.', 'punct', 

'decided'), ('\n', 'dep', '.')]
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Sentence 4: They travelled by train to France because they had 

enough friends in the country.

  Named Entities: [('France', 'GPE')]

   Dependencies: [('They', 'nsubj', 'travelled'), ('travelled', 

'ROOT', 'travelled'), ('by', 'prep', 'travelled'), ('train', 

'pobj', 'by'), ('to', 'prep', 'travelled'), ('France', 

'pobj', 'to'), ('because', 'mark', 'had'), ('they', 'nsubj', 

'had'), ('had', 'advcl', 'travelled'), ('enough', 'amod', 

'friends'), ('friends', 'dobj', 'had'), ('in', 'prep', 

'friends'), ('the', 'det', 'country'), ('country', 'pobj', 

'in'), ('.', 'punct', 'travelled'), ('\n', 'dep', '.')]

Inferred Discourse Relations:

Sentence 2 contrasts with Sentence 1

Sentence 4 provides a reason for Sentence 3

Discourse parsing deals with how different parts of a text are related 

to one another. It can be through logical and communicative connections. 

The main part of the output is the “discourse information.”

The following input text is labeled by sentence numbers.

• (sentence 1) Although she was very busy with 

office work.

• (sentence 2) Mary felt she had had enough of it.

• (sentence 3) She and her spouse decided they needed 

to go on a holiday.

• (sentence 4) They traveled by train to France because 

they had enough friends in the country.
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The following is the summary of discourse relations.

• Contrasting relation: Sentence 2 seems to contrast 

with sentence 1. The word “Although” in sentence 1 

talks about a contrast with the decision pronounced in 

sentence 2.

• Reason relation: Sentence 4 seems to give a reason for 

the decision made in sentence 3. The word “because” 

specifies that sentence 4 explains why they traveled 

to France.

 Entity Tracking (Code Demo)

Entity tracking deals with keeping track of the entities (like people, 

places, or objects) mentioned throughout a text. It’s like keeping track of 

characters throughout a novel. Here’s a simple code demo using spaCy for 

named entity recognition (NER) and tracking those entities.

import spacy

# Load the English NLP model

nlp = spacy.load('en_core_web_sm')

# Sample text.

text = """

Although she was very busy with office work, Mary felt she had 

had enough of it.

She and her spouse decided they needed to go on a holiday.

They travelled by train to France because they had enough 

friends in the country.

"""
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# Process the text with spaCy

doc = nlp(text)

# Dictionary to track entities

entity_tracking = {}

# Iterate through the sentences in the doc

for sent in doc.sents:

    print(f"Sentence: {sent}")

    # Iterate through named entities in the sentence

    for ent in sent.ents:

        print(f"Entity: {ent.text}, Label: {ent.label_}")

        # Track entities and update if seen again

        if ent.text in entity_tracking:

            entity_tracking[ent.text] += 1

        else:

            entity_tracking[ent.text] = 1

# Output tracked entities

print("\nEntity Tracking:")

for entity, count in entity_tracking.items():

    print(f"{entity}: mentioned {count} times")

Sentence:

Sentence: Although she was very busy with office work, Mary 

felt she had had enough of it.

Entity: Mary, Label: PERSON

Sentence: She and her spouse decided they needed to go on a 

holiday.

Entity: a holiday, Label: DATE

Sentence: They travelled by train to France because they had 

enough friends in the country.
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Entity: France, Label: GPE

Entity Tracking:

Mary: mentioned 1 times

a holiday: mentioned 1 times

France: mentioned 1 times

More professional code for entity tracking is written using packages 

like spaCy, AllenNLP, or Hugging Face Transformers. Entity code functions 

first detect, classify, and link entities across texts. These systems utilize 

NER and coreference resolution to track entities, even when they are 

pronouns or synonyms. Professional code is often part of larger NLP 

pipelines that integrate with databases or knowledge graphs to establish 

entity relationships and maintain the required accuracy across long input 

documents or conversations.

 Lexical Chains (Code Demo)

A lexical chain is a sequence of related words that are connected either 

through direct synonyms or semantically related terms. These related 

words share a common meaning or topic. We discussed lexical chains with 

an example in the theory section. This book provides a simple code demo 

of lexical chains using WordNet from the NLTK library.

For professional NLP applications, lexical chain code utilizes advanced 

algorithms that may be based on WordNet, distributional semantics, 

or word embeddings, such as Word2Vec or BERT, to capture semantic 

relationships between words. Such systems use synonyms, hypernyms, 

and context-based similarities to generate accurate lexical chains. This 

code is often united with text segmentation, word sense disambiguation, 

and coherence modeling for tasks involving summarization or topic 

detection.
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# !pip install nltk

# !python -m nltk.downloader wordnet

import nltk

from nltk.corpus import wordnet as wn

# Sample text

text = "Anil is a blood student in my class. He runs 

very fast."

# Tokenize the text

words = nltk.word_tokenize(text.lower())

# Function to find synonyms from WordNet

def get_synonyms(word):

    synonyms = set()

    for syn in wn.synsets(word):

        for lemma in syn.lemmas():

            synonyms.add(lemma.name())

    return synonyms

# Build lexical chains

lexical_chains = []

for word in words:

    found_chain = False

    word_synonyms = get_synonyms(word)

    # Check if word fits into any existing chain

    for chain in lexical_chains:

        if chain.intersection(word_synonyms):

            chain.update(word_synonyms)

            found_chain = True

            break
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    # If not, start a new chain

    if not found_chain and word_synonyms:

        lexical_chains.append(set(word_synonyms))

# Output lexical chains

for i, chain in enumerate(lexical_chains):

    print(f"Chain {i + 1}: {chain}")

Chain 1: {'indigo', 'indigotin', 'Indigofera_suffruticosa', 

'anil', 'Indigofera_anil'}

Chain 2: {'personify', 'represent', 'be', 'equal', 'follow', 

'live', 'cost', 'constitute', 'embody', 'comprise', 'make_up', 

'exist'}

Chain 3: {'type_A', 'adenine', 'ampere', 'a', 'angstrom_

unit', 'antiophthalmic_factor', 'vitamin_A', 'angstrom', 

'axerophthol', 'amp', 'group_A', 'deoxyadenosine_

monophosphate', 'A'}

Chain 4: {'debauched', 'lineage', 'line', 'riotous', 'blood', 

'blood_line', 'fast', 'degenerate', 'quick', 'bloodline', 

'dissolute', 'flying', 'libertine', 'tight', 'fasting', 

'firm', 'parentage', 'rake', 'ancestry', 'degraded', 'loyal', 

'profligate', 'rip', 'rakehell', 'stock', 'dissipated', 

'immobile', 'stemma', 'pedigree', 'descent', 'truehearted', 

'line_of_descent', 'roue', 'origin'}

Chain 5: {'scholarly_person', 'bookman', 'pupil', 'educatee', 

'student', 'scholar'}

Chain 6: {'Indiana', 'atomic_number_49', 'In', 'IN', 'inward', 

'Hoosier_State', 'inch', 'inwards', 'indium', 'in'}

Chain 7: {'execute', 'division', 'incline', 'family', 

'outpouring', 'bleed', 'runnel', 'consort', 'running_play', 

'bunk', 'pass', 'persist', 'social_class', 'be_given', 

'campaign', 'run_for', 'escape', 'hunt_down', 'discharge', 

'running_game', 'ply', 'lam', 'guide', 'trial', 'hightail_it', 
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'classify', 'category', 'go', 'lead', 'head_for_the_hills', 

'rivulet', 'sort', 'rill', 'lean', 'carry', 'unravel', 'turn_

tail', 'course_of_study', 'melt_down', 'move', 'streak', 

'separate', 'foot_race', 'political_campaign', 'ravel', 

'fly_the_coop', 'stratum', 'scat', 'race', 'running', 'course_

of_instruction', 'melt', 'run_away', 'scarper', 'streamlet', 

'function', 'work', 'endure', 'draw', 'hunt', 'test', 'black_

market', 'tally', 'operate', 'sort_out', 'track_down', 'play', 

'run', 'break_away', 'tend', 'ladder', 'form', 'grade', 'feed', 

'die_hard', 'footrace', 'class', 'flow', 'assort', 'extend', 

'take_to_the_woods', 'socio-economic_class', 'course', 'year', 

'prevail', 'range'}

Chain 8: {'atomic_number_2', 'helium', 'He', 'he'}

Chain 9: {'very', 'real', 'really', 'selfsame', 'rattling', 

'identical'}

The output characterizes lexical chains as groups of semantically 

related words from the input text. Sometimes, you see a couple of 

unrelated terms (not given in the input text) in these lexical chains. This is 

an example of how lexical chaining can bring in terms that aren’t explicitly 

present but are linked conceptually in the word database. The algorithm 

sometimes needs fine-tuning to limit the chain generation to the terms 

that more closely match your input text.

 Topic Modeling (Code Demo)

Topic modeling techniques use word patterns and groupings to identify 

the key themes or topics in a large collection of texts. This chapter presents 

a simple demo of topic modeling using the TF–IDF technique. (We covered 

this technique in earlier chapters.) Professional topic modeling code is 

often written using advanced techniques like Latent Dirichlet allocation 
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(LDA) or non-negative matrix factorization. It leverages Python packages 

like Gensim or scikit-learn. LDA is covered in the upcoming chapters.

We follow these five simple steps to write our code.

 1. Prepare documents. Start with a list of text 

documents you want to analyze.

 2. Initialize vectorizer. Create a TfidfVectorizer object. 

A TF–IDF score converts the input text documents 

into numerical data. This process ignores 

stop words.

 3. Transform text. Use the vectorizer to convert the 

input text documents into a TF–IDF matrix.

 4. Get feature names. Extract the list of words that were 

considered in the TF–IDF analysis.

 5. Display scores. For each document, print the words 

and their TF–IDF scores.

from sklearn.feature_extraction.text import TfidfVectorizer

# Sample text data (documents)

documents =   ["Although she was very busy with office work, 

Mary felt she had had enough of it.",

                 "She and her spouse decided they needed to go 

on a holiday.",

                 "They travelled by train to France because they 

had enough friends in the country."]

# Initialize the TF-IDF Vectorizer

tfidf_vectorizer = TfidfVectorizer(stop_words='english')

# Fit and transform the documents into a TF-IDF matrix

tfidf_matrix = tfidf_vectorizer.fit_transform(documents)
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# Get the feature names (terms) from the TF-IDF model

feature_names = tfidf_vectorizer.get_feature_names_out()

# Display the TF-IDF scores for each document

for doc_idx, doc in enumerate(documents):

    print(f"\nDocument {doc_idx + 1}: {doc}")

    # Get the TF-IDF scores for each word in the document

    for word_idx in tfidf_matrix[doc_idx].nonzero()[1]:

         print(f"{feature_names[word_idx]}: {tfidf_matrix[doc_

idx, word_idx]:.4f}")

Document 1: Although she was very busy with office work, Mary 

felt she had had enough of it.

felt: 0.4472

mary: 0.4472

work: 0.4472

office: 0.4472

busy: 0.4472

Document 2: She and her spouse decided they needed to go on a 

holiday.

holiday: 0.5000

needed: 0.5000

decided: 0.5000

spouse: 0.5000

Document 3: They travelled by train to France because they had 

enough friends in the country.

country: 0.4472

friends: 0.4472

france: 0.4472

train: 0.4472

travelled: 0.4472
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The output addresses the TF–IDF scores for the words in documents 

1, 2, and 3. The higher the score, the more relevant the word is to the 

content of the document. In the case of document 2, each of these words 

has a high score of 0.5000. It means all the words are equally important in 

this document. If a word has a high TF–IDF score, it means that the word 

is exclusive to that document, and it could be a strong pointer of its topic 

or content. Note that this was a simplified analysis. Better results can be 

obtained using advanced techniques like LDA.

 Cohesion Analysis (Code Demo)

Cohesion analysis has two objectives. First, it looks at how well different 

parts of a text fit together. And second, how they connect to make the 

text flow smoothly and make sense. The following demo brings in a new 

concept of cosine similarity, which measures the similarity between two 

vectors. An interpretation of the similarity scores is given. We cover this 

concept in later in this chapter.

We used a basic TF-IDF technique in our code demo. More advanced 

vectorization techniques used by professionals for cohesion insight 

include word embeddings, such as Word2Vec and GloVe, to capture more 

nuanced insights into text similarity and cohesion. We take up these 

techniques later in this chapter.

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity

# Revised sentences

sentences = [

     "Mary is feeling overwhelmed with her busy office job but 

finds some relief in her evening walks.",

     "Mary feels overwhelmed with her hectic work schedule, yet 

she finds relaxation in her daily evening walks.",
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     "Despite a busy workday, Mary enjoys unwinding with a walk 

in the evening."

]

# Initialize the TF-IDF Vectorizer

vectorizer = TfidfVectorizer(stop_words='english')

# Fit and transform the sentences into a TF-IDF matrix

tfidf_matrix = vectorizer.fit_transform(sentences)

# Compute the cosine similarity matrix

cosine_sim_matrix = cosine_similarity(tfidf_matrix)

# Display the cosine similarity matrix

print("Cosine Similarity Matrix:")

for i in range(len(sentences)):

    for j in range(len(sentences)):

         print(f"Similarity between Sentence {i + 1} and 

Sentence {j + 1}: {cosine_sim_matrix[i, j]:.2f}")

Cosine Similarity Matrix:

Similarity between Sentence 1 and Sentence 1: 1.00

Similarity between Sentence 1 and Sentence 2: 0.32

Similarity between Sentence 1 and Sentence 3: 0.19

Similarity between Sentence 2 and Sentence 1: 0.32

Similarity between Sentence 2 and Sentence 2: 1.00

Similarity between Sentence 2 and Sentence 3: 0.10

Similarity between Sentence 3 and Sentence 1: 0.19

Similarity between Sentence 3 and Sentence 2: 0.10

Similarity between Sentence 3 and Sentence 3: 1.00

Interpretation of the output consists of the following.

• Interpreting the scores: Higher scores specify more 

cohesive sentences with a shared vocabulary and 

similar content.
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• Low inter-sentence similarity: The highest is 0.32. It 

shows limited shared content or vocabulary.

• Minimal overlap: Low similarity scores of 0.10 and 0.19 

indicate minimal thematic or lexical overlap between 

the sentences.

A similarity score of 1.00 indicates perfect similarity with itself. 

Similarity scores of 0 indicate no shared vocabulary and similarity of 

content between sentences.

 Temporal Relation Identification (Code Demo)

Temporal relation identification is the process of finding time-based 

relationships between events in an input text. For instance, take the 

sentence “I want to complete this chapter before lunch;” the word “before” 

indicates the time-based connection between two events. It describes 

finishing work earlier than lunch.

Our code demo (Listing 7-1) for temporal relation identification would 

first perform dependency parsing to extract events and detect temporal 

signals, which include words like “before,” “after,” “during,” “until,” and 

“while.” Following this, the classification of events is performed using rule-

based methods or machine learning models. This approach aims to find 

the sequence and timing of actions in a given input text. We utilize spaCy 

to extract events.

Our program follows these five steps.

 1. Import libraries and load models.

 2. Feature extraction from sentences.

 3. Prepare training data.

 4. Train random forest classifier.

 5. Predict temporal relations in new sentences.
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Listing 7-1. Temporal Relation Identification

# Required Libraries

import spacy

from sklearn.ensemble import RandomForestClassifier

import numpy as np

# Load the spaCy model for dependency parsing

nlp = spacy.load("en_core_web_sm")

# Sample sentences with temporal relations

sentences = [

    "She finished her work before going to lunch.",

    "He went to the gym after work.",

    "They waited until the show started.",

    "The meeting was delayed during the storm."

]

# Temporal signals

temporal_signals = ["before", "after", "during", "until", 

"while"]

# Feature extraction - identifying events and temporal signals

def extract_features(sent):

    doc = nlp(sent)

    events = []

    temporal_relation = ""

    for token in doc:

        if token.dep_ == "ROOT":  # Event (verb) extraction

            events.append(token.lemma_)

         if token.text in temporal_signals:  # Temporal signal 

detection

            temporal_relation = token.text

    return events, temporal_relation
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# Prepare training data - sentences, events, and labels (1 for 

temporal relation present, 0 otherwise)

X = []

y = []

for sentence in sentences:

    events, signal = extract_features(sentence)

     if signal:  # If temporal signal is present, we 

classify as 1

         X.append([len(events)])  # Simple feature: number 

of events

        y.append(1)

    else:

        X.append([0])

        y.append(0)

# Convert to numpy arrays

X = np.array(X)

y = np.array(y)

# Train a Random Forest Classifier

clf = RandomForestClassifier(n_estimators=10, random_state=42)

clf.fit(X, y)

# Predict on new sentences

new_sentences = ["John started his project before the deadline.",

                 "She arrived after the party had begun."]

for new_sent in new_sentences:

    events, signal = extract_features(new_sent)

    prediction = clf.predict([[len(events)]])

    print(f"Sentence: {new_sent}")
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     print(f"Detected Temporal Signal: {signal}, Prediction: 

{'Temporal relation' if prediction == 1 else 'No temporal 

relation'}\n")

Sentence: John started his project before the deadline.

Detected Temporal Signal: before, Prediction: Temporal relation

Sentence: She arrived after the party had begun.

Detected Temporal Signal: after, Prediction: Temporal relation

function for better understanding.

• extract_features(sent) processes each sentence using 

spaCy. The function returns the list of events (verbs) 

and the temporal relation signal (if present).

• doc = nlp(sent) prepares the sentence and puts it into 

a structured format for analysis.

• for token in doc loops through each word in the 

sentence.

• token.dep_ == “ROOT” checks if the word is the main 

verb (the root action) and stores it.

• if token.text in temporal_signals: If a word is 

found in the list of temporal signals, it is stored as a 

temporal signal.

Converting words into ML model format: Without vectorizing the entire 

sentence, the logic uses a simple logic for converting words into numbers. 

It counts the number of verbs (events) as features in X and puts a binary 

label (1 or 0) for y based on the presence of temporal signals. This keeps the 

dataset simple and in numerical format without using a vectorizer.

The output confirms that the code is effectively detecting temporal 

signals present in the input sentences. The model also correctly predicts 

the existence of temporal relations based on these signals.
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7.4  Distributional Semantics 
and Word Embeddings

Distributional semantics deals with discovering word meanings based on 

the company they keep. Words appearing in similar contexts often have 

interrelated meanings. Let’s look at an example. “Doctor” and “nurse” are 

often used together in hospital and healthcare documents; we can assume 

they are related in meaning. Let’s look at another example: the words 

“king” and “queen” are often found together in contexts related to royalty, 

palaces, or authority. This way, they are seen as similar. Distributional 

semantics works based on the distributional hypothesis, which states, 

“You shall know a word by the company it keeps.”

To recognize word meanings, each word is assigned a unique vector, 

which appears as a list of numbers. These word vectors are created using 

a large amount of text data. If two words have meanings, the vectors for 

both are close to each other. Similar words have less Euclidean distance 

or cosine similarity (discussed later) between the vectors. With these 

numerical forms of words, we can measure similarity. These word vectors 

are sometimes used interchangeably in meaning with “word embeddings.”

Let’s look at word vectors (word embeddings). The actual numerical 

values of word embeddings for words like “king,” “man,” “woman,” and 

“queen” can change depending on the type of word embedding model 

used. There are many word embedding models in use; a few examples 

are Word2Vec, GloVe, and FastText. To give you an idea, we use the 

hypothetical word embeddings of king, man, and woman as follows.

• king: 0.6,0.4,0.1,–0.2,0.3,0.5,–0.10

• man: 0.3,0.5,0.2,–0.1,0.1,0.4,0.00

• woman: 0.4,0.3,0.5,0.0,0.2,0.6,0.1
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If you do a simple math (king – man) + woman, you get the calculated 

value of queen.

• Queenc: 0.7,0.2,0.4, −0.1,0.4,0.7,0.0

The calculated vector Queenc is close to the following 

hypothetical vector of queen (Queenh).

• Queenh: 0.7,0.5,0.3,0.1,0.4,0.8,0.2

Here, we used the classic example of queen ≈ king – man + woman, 

which demonstrates how word embeddings can capture relationships 

between words through mathematical operations. Word embeddings 

are useful for various NLP tasks like machine translation and sentiment 

analysis.

Euclidean distance is the distance between two-word vectors in space. 

Let’s look at a simple example of two-word vectors with hypothetical 

numerical values as follows. To keep it simple, we take only three numbers 

in each word vector.

• king: [0.8, 0.5, 0.6]

• queen: [0.7, 0.6, 0.5]

• apple: [0.2, 0.1, 0.3]

The Euclidean distance “king” and “queen” is calculated as follows.

Euclidean distance (king, queen) = SQUARE ROOT 

((0.8−0.7)2+(0.5−0.6)2+(0.6−0.5)2) = 0.173

Euclidean distance (king, apple) = SQUARE ROOT 

((0.8−0.2)2+(0.5−0.1)2+(0.6−0.3)2 ) = 0.781

As expected, Euclidean distance (king, queen) is lesser than Euclidean 

distance (king, apple). The reason is simple: king and queen are similar in 

meaning because both belong to a royal family, but king and apple have 

different meanings.
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Similar to Euclidean distance, cosine similarity also measures 

how close or similar word vectors are. Euclidean distance is based on 

calculating the actual distance between vectors, while cosine similarity 

measures the angle between them. Cosine similarity focuses on direction 

rather than magnitude. Let’s calculate the cosine similarity between two 

words through an example. The following uses the same word vectors of 

“king”, “queen”, and “apple” with the same hypothetical numerical values.

The following steps calculate the cosine similarity between the words 

“king” and “queen”.

• Dot product of “king” and “queen” word vectors = (0.8×

0.7)+(0.5×0.6)+(0.6×0.5)=1.16

• Magnitude of “kind” word vector = SQUARE 

ROOT((0.8)2+(0.5)2+(0.6)2 )=1.118

• Magnitude of “queen” word vector= SQUARE 

ROOT((0.7)2+(0.6)2+(0.5)2 )= 1.049

• Cosine similarity = 1.16 / (1.118×1.049) = 0.989

Similarly, if we compute the cosine similarity between “king” and 

“apple,” it comes out as 0.933. Note that the cosine similarity of “king” 

and “queen” (0.989) is more than the cosine similarity of “king” and 

“apple” (0.933). It indicates a closer relationship between the former pair 

compared to the latter. Cosine similarity ranges from –1 to 1.

• 1 indicates perfect similarity (parallel vectors that point 

in the same direction).

• 0 means no similarity (vectors are orthogonal).

• –1 indicates perfect dissimilarity (vectors point in 

opposite directions).
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Cosine similarity is often used in information retrieval to assess 

the degree to which two documents or words are related in meaning. 

Euclidean distance is frequently used in NLP tasks such as document 

clustering.

7.4.1  Latent Semantic Analysis

Word embeddings enable machines to process natural languages word 

by word. They convert words into numerical representations, which 

machines (often computers) understand. This way, machines can 

interpret and process language more effectively. Over the years, several 

models have emerged to develop word embeddings, including Word2Vec 

and GloVe, as well as contextualized embeddings such as BERT and 

GPT. These approaches help model the delicate nuances of language, 

enabling NLP applications to identify semantic similarity, context, and 

deeper language structures. This section explores these techniques, from 

traditional embeddings to the latest advancements, to understand how 

they contribute to language understanding in NLP applications. This 

section discusses latent semantic analysis (LSA), which is a foundational 

technique to develop word embeddings.

LSA is a technique used to determine the meaning of words based on 

their context. It examines large text corpora to identify patterns showing 

how words relate to each other. Here, patterns refer to the ways words are 

frequently found together in similar contexts. This frequency reveals that 

words often convey related ideas or themes when they appear in similar 

contexts.

We can use either the term-document matrix (TDM) or the TF–IDF 

matrix for LSA, but they serve different purposes. TF–IDF is preferred 

because it helps LSA focus on the most important words in documents. 

TF–IDF puts more weight on exceptional words, and it helps us realize 

the main ideas. (TDM and TF–IDF were covered earlier in this book.) The 

following steps preconform LDA using TF–IDF.
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 1. Clean and format the data for analysis.

 2. Construct the TF–IDF matrix from the cleaned 

documents.

 3. Apply singular value decomposition (SVD) to the 

TF–IDF matrix to reduce its dimensions and to 

identify latent topics within the text.

 4. Analyze the results to figure out term-document 

relationships and identify prominent themes 

or topics.

 5. Visualize the reduced matrix or the results of the 

LDA to better understand patterns and meanings in 

the data.

 Code Demo of LSA

Listing 7-2 is a code demo of LSA using a simplified text corpus. We use the 

TF–IDF matrix in this demo.

Listing 7-2. LSA Code Demo

# The following is a simplified code demo of LSA

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.decomposition import TruncatedSVD

# Sample common text corpus

documents = [

    "The cat sat on the mat.",

    "Dogs are great companions.",

    "The sun is bright today.",
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    "Cats and dogs are popular pets.",

    "The weather is nice for a walk."

]

# Step 1: Data Cleaning and Formatting for Analysis,

# Skipping this step as the data has already been cleaned.

# Step 2: Construct the TF-IDF matrix

vectorizer = TfidfVectorizer()

tfidf_matrix = vectorizer.fit_transform(documents)

# Step 3: Apply SVD to reduce dimensions

svd = TruncatedSVD(n_components=2)

lsa_matrix = svd.fit_transform(tfidf_matrix)

# Step 4: Analyze the results

# Create a DataFrame for viewing

lsa_df = pd.DataFrame(lsa_matrix, columns=['Concept 1', 

'Concept 2'])

print("Reduced Dimensions (Latent Concepts):")

print(lsa_df)

Reduced Dimensions (Latent Concepts):

      Concept 1     Concept 2

0  6.263182e-01  1.932910e-16

1 -4.140572e-16  8.096747e-01

2  7.173435e-01 -7.926662e-15

3 -1.891549e-16  8.096747e-01

4  6.985829e-01  8.989044e-15

Let’s interpret this output matrix.

• In the output matrix, rows represent individual 

documents.

• Columns represent latent concepts or themes.
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• Values indicate the strength of each document’s 

relationship to those concepts.

• Negative values indicate a lack of relevance of that 

document to that concept (column).

• High values indicate more relevance of that document 

(row) to that concept (column).

• The first and third documents (column 1) show high 

values. It shows strong relevance to Concept 1.

• The second document has a significant value (column 

2). It shows strong relevance to Concept 2.

• Other documents in both columns are less relevant.

• The first and third documents may share a theme.

• The second document relates to a different topic.

• Higher scores indicate thematic similarities 

among documents. It helps in clustering and topic 

identification.

• Look at which documents have higher values for each 

concept and then check their content.

• You can then decode what concept 1 and concept 2 

represent based on their thematic similarities.

7.4.2  Popular Word Embeddings

Word embeddings use large amounts of text to learn the relationship 

between the words. Popular word embeddings, such as Word2Vec, GloVe, 

and FastText, capture context, similarity, and semantic nuances to map 

words into numerical vectors. These numerical vectors essentially capture 
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their meaning and relationships between words. Next, let’s divide these 

word embeddings into traditional and newer ones, like BERT and GPT, 

based on contextual word representations.

 Traditional Word Embeddings

Traditional word embeddings map words to fixed-size vectors. They were 

the early techniques in NLP based on word co-occurrence patterns in 

large text datasets. Traditional techniques, such as Word2Vec and GloVe, 

analyze how frequently and in what context words appear together in large 

training datasets to capture relationships between words and create word 

representations in the form of word vectors.

 Word2Vec

Word2Vec (word to vector) converts words to machine readable numeric 

vectors, which represent a specific word (as a vector) in multidimensional 

space. These vectors help machines to capture word meaning, semantic 

similarity, and relationship with surrounding text. Word2Vec is essentially 

a pre-trained model. It utilizes a shallow neural network model to acquire 

the meaning of words from a large corpus of (training) texts. To make the 

processing prompt, fast, and transparent, Word2Vec neural networks use 

only one or two hidden layers. These neural networks are trained using 

large databases of texts. The Word2Vec algorithm uses either continuous 

bag of words or skip-gram approaches to generate word embeddings.

 Continuous Bag of Words Model

The continuous bag of words (CBOW) model is an unsupervised method 

of finding word embeddings. It predicts the target word by utilizing the 

words surrounding it (context words). For this purpose, it utilizes a shallow 

neural network program (CBOW model). This program learns to predict 

any target word by utilizing the words that appear before and after it in 
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a given context window. By concentrating on the surrounding context 

words, the CBOW model is able to capture the meaning of a word (in a 

given context) in the form of numerical vectors (embeddings).

For instance, in the sentence, “he is a great scholar,” if we want 

the word embeddings of the word “great,” we first take a context window. 

Assuming this context window has two words, then we consider two words 

before the target word “great” and also consider two words after it. So, for 

our example sentence, the context words are as follows.

• Two words before the target word “great” – (“is”, “a”)

• Two words after the target word “great” – (“scholar”)

Using this context window, the CBOW model learns to calculate 

the word embeddings of the target word “great.” Listing 7-3 is a code 

demonstration of CBOW, a well-documented shallow neural network.

Listing 7-3. Code Demo of Continuous Bag of Words Model

8 #Running a shallow neural network program to 

demonstrate CBOW.

9 # Ignore deprecation warnings for cleaner output.

import warnings

warnings.filterwarnings("ignore", category=DeprecationWarning)

# Import libraries

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential   

# Sequential model

from tensorflow.keras.layers import Dense, Embedding, 

Flatten  # Layers for neural network

from tensorflow.keras.preprocessing.text import Tokenizer   

# Tokenizer for text preprocessing
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from tensorflow.keras.preprocessing.sequence import pad_

sequences  # For padding sequences

# Sample corpus of sentences (training curpus)

sentences = [

    "he is a great scholar",

    "a great scholar writes great papers",

    "the scholar is very great",

    "great ideas come from great minds"

]

# Tokenize the sentences

tokenizer = Tokenizer()

tokenizer.fit_on_texts(sentences)  # Fit tokenizer on sentences

total_words = len(tokenizer.word_index) + 1  # Total unique 

words in corpus

# Initialize lists for CBOW input-output pairs

input_data = []  # Context words

output_data = []  # Target word

# Define the context window size

window_size = 2

# Create input-output pairs for CBOW

for sentence in sentences:

    words = sentence.split()

   # Loop through the words

    for i in range(window_size, len(words) - window_size):

        context = []

        for j in range(i - window_size, i + window_size + 1):

            if j != i:  # Skip target word

                 context.append(tokenizer.word_

index[words[j]])  # Append context word index
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        input_data.append(context)  # Add context to input data

         output_data.append(tokenizer.word_index[words[i]])   

# Add target word to output data

# Pad input sequences to ensure uniform length

input_data = pad_sequences(input_data, padding='post')

# One-hot encode output data for categorical labels

output_data = np.array(output_data)

output_data = np.eye(total_words)[output_data]  # Convert 

to one-hot

# Build CBOW model

model = Sequential()

model.add(Embedding(input_dim=total_words, output_dim=10, 

input_length=window_size * 2))  # Embedding layer

model.add(Flatten())  # Flatten to 1D

# Output layer with softmax for word prediction

model.add(Dense(total_words, activation='softmax'))

# Compile model with optimizer, loss, and metrics

model.compile(optimizer='adam', loss='categorical_

crossentropy', metrics=['accuracy'])

# Train the model on input-output pairs

model.fit(input_data, output_data, epochs=20, verbose=1)

# Retrieve embedding for the word "great"

# Index of "great" in vocabulary

great_index = tokenizer.word_index['great']

great_embedding = model.layers[0].get_weights()[0][great_

index]  # Extract embedding

print("Embedding for 'great':", great_embedding)

10 Epoch 1/20
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11 1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 725ms/step - 

accuracy: 0.1667 - loss: 2.6119

Epoch 2/20

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/step - 

accuracy: 0.3333 - loss: 2.6053

Epoch 3/20

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step - 

accuracy: 0.5000 - loss: 2.5986

.......

Epoch 20/20

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - 

accuracy: 1.0000 - loss: 2.4814

OUTPUT >>> Embedding for 'great':  

[ 0.019222   -0.01932465 -0.03971442 -0.02196687 -0.02987816 

0.00716395 -0.01269478 0.02227857 0.01485946 -0.07757436]

-0.01269478  0.02227857  0.01485946 -0.07757436]

To highlight it, the following is the desired ten-element word vector or 

embedding for the word “great” by using the CBOW model.

[ 0.019222   -0.01932465 -0.03971442 -0.02196687 -0.02987816 

0.00716395 -0.01269478 0.02227857 0.01485946 -0.07757436]

 Skip-gram Model

Skip-gram models are also unsupervised methods. Like CBOW, they are 

also based on shallow neural networks with only one or two hidden layers. 

But skip-gram is exactly the opposite of CBOW. skip-gram models predict 

context words (surrounding words) given a target word. If we choose 

window size=2 in the sample sentence, “he is a great scholar”, we get the 

following possible pairs.
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• (he, is) (is, he)

• (is, a) (a, is)

• (a, great) (great, a)

• (great, scholar) (scholar, great)

Each pair has a central word as input and a context word as output. 

For the first pair (he, is), the central word is “he,” and the context word is 

“is.” When we decide which is the target, the remaining one automatically 

becomes the surrounding. Similarly, in (great, scholar), if we decide “great” 

as the central or target word, “scholar” automatically becomes the context 

or the output word. It is for a 2-gram model. In a 3-gram model, sequences 

of three consecutive words are formed.

If we choose a window size = 3, the valid 3-gram groups are as follows.

• (he, is, a), (he, a, is)

• (is, a, great), (is, great, a)

• (a, great, scholar), (a, scholar, great)

Each group consists of a central word with context before and after it. 

For instance, in the group (a, great, scholar), the central word is “great,” 

and the context words are “a” and “scholar.”

Next, let’s create and run a sample neural network-based skip-gam 

model for demonstration (Listing 7-4), following these broad steps.

 1. Import the libraries.

 2. Define a corpus.

 3. Initialize the tokenizer.

 4. Generate a vocabulary.

 5. Convert to sequences.

 6. Create skip-gram pairs.
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 7. Prepare input/output data.

 8. Build a model.

 9. Compile a model.

 10. Train model.

 11. Extract the embeddings.

Listing 7-4. Code Demo of Skip-gram Model

#Running a shallow neural network program to demonstrate skip- 

gram model

# Import necessary libraries

# For numerical operations

import numpy as np

# For deep learning models

import tensorflow as tf

# For creating a linear model

from tensorflow.keras.models import Sequential

# Layers for model building

from tensorflow.keras.layers import Embedding, Dense, Flatten

# For tokenizing text

from tensorflow.keras.preprocessing.text import Tokenizer

# For generating Skip-gram pairs

from tensorflow.keras.preprocessing.sequence import skipgrams

# Sample corpus for demonstration

sentences = ["he is a great scholar", "a great scholar writes 

great papers"]

# Initialize tokenizer and fit on text

tokenizer = Tokenizer()

# Fit tokenizer on sample sentences

tokenizer.fit_on_texts(sentences)
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# Get vocabulary size

total_words = len(tokenizer.word_index) + 1

# Convert sentences to sequences of word indices

# Convert sentences to integer sequences

sequences = tokenizer.texts_to_sequences(sentences)

# Generate word pairs (center, context) for Skip-gram

# Initialize list to store Skip-gram pairs

skip_gram_pairs = []

for seq in sequences:

    # For each sentence sequence

     pairs, _ = skipgrams(seq, vocabulary_size=total_words, 

window_size=2)

    # Generate Skip-gram pairs

    skip_gram_pairs.extend(pairs)  # Add pairs to list

# Separate input (center) and output (context) words

input_words, context_words = zip(*skip_gram_pairs)

# Convert input words to array

input_words = np.array(input_words)

# Convert context words to array

context_words = np.array(context_words)

# Define Skip-gram model

model = Sequential()

# Embedding layer with vector size 10

model.add(Embedding(total_words, 10, input_length=1))

# Flatten the output

model.add(Flatten())

# Output layer for vocabulary-size classification

model.add(Dense(total_words, activation='softmax'))

# Compile model with categorical cross-entropy

# Set optimizer and loss function
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model.compile(optimizer='adam', loss='sparse_categorical_

crossentropy')

# Train model on (input, context) pairs

model.fit(input_words, context_words, epochs=20, verbose=1)

# Get embeddings for a specific word, e.g., "great"

# Find index of word "great"

great_index = tokenizer.word_index['great']

# Get embedding vector for "great"

great_embedding = model.layers[0].get_weights()[0][great_index]

# Print embedding

print("Embedding for 'great':", great_embedding)

• Epoch 1/20

2/2 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - 

loss: 2.0738

Epoch 2/20

2/2 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - 

loss: 2.0708

..........

Epoch 20/20

2/2 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - 

loss: 2.0389

OUTPUT >>> Embedding for 'great':  

[ 0.01801779 -0.0028935  -0.04373218   

0.06102643 -0.04138939 -0.05270927

  0.1154007  -0.08093932 -0.07753371 -0.02089559]

To highlight it, the following is the desired ten-element word vector or 

embedding for the word “great” by using the skip-gram model.

[ 0.01801779 -0.0028935  -0.04373218   

0.06102643 -0.04138939 -0.05270927  

0.1154007  -0.08093932 -0.07753371 -0.02089559]
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You may like to compare this output to that of the CBOW model, 

calculated in the previous section.

 CBOW and Skip-gram Code Demonstration Using Word2Vec

Let’s run a Word2Vec-based program to demonstrate CBOW and skip- 

gram models. The following Word2Vec code implementation of these 

models is based on a pre-built, optimized algorithm for training word 

embeddings. In comparison, neural network-based programs have been 

manually created and trained to use customized shallow neural networks. 

Word2Vec is highly efficient and handles large corpora more effectively 

than custom-built models.

Our program Listing 7-5 follows the following broad steps.

 1. Import libraries and prepare data.

 2. Tokenize sentences and prepare a corpus.

 3. Initialize the Word2Vec model for CBOW or 

skip-gram.

 4. Train the Word2Vec model.

 5. Access word embeddings.

 6. Evaluate and use the embeddings.

Listing 7-5. Code  to together demonstrate CBOW and  

skip-gram models

#Running a Word2Vec based program to together demonstrate CBOW 

and skip-gram models

# Import necessary libraries

import gensim

from gensim.models import Word2Vec

from nltk.tokenize import word_tokenize
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# Sample corpus (list of sentences)

sentences = ["he is a great scholar", "a great scholar writes 

great papers"]

# Tokenize the sentences into words

tokenized_sentences = [word_tokenize(sentence.lower()) for 

sentence in sentences]

# CBOW Model (use skip_gram=False for CBOW)

cbow_model = Word2Vec(tokenized_sentences, vector_size=10, 

window=2, min_count=1, sg=0)

# sg=0 denotes CBOW model

# Train CBOW model

cbow_model.save("cbow_model.bin")

# Predict word embedding for 'great' using CBOW model

cbow_embedding = cbow_model.wv['great']

print("CBOW Embedding for 'great':", cbow_embedding)

# Skip-gram Model (use skip_gram=True for Skip-gram)

skipgram_model = Word2Vec(tokenized_sentences, vector_size=10, 

window=2, min_count=1, sg=1)

# sg=1 denotes Skip-gram model

# Train Skip-gram model

skipgram_model.save("skipgram_model.bin")

# Predict word embedding for 'great' using Skip-gram model

skipgram_embedding = skipgram_model.wv['great']

print("Skip-gram Embedding for 'great':", skipgram_embedding)

OUTPUT 1>>> CBOW Embedding for 'great': 

[-0.00536227  0.00236431  0.0510335    

0.09009273 -0.0930295  -0.07116809 0.06458873   

0.08972988 -0.05015428 -0.03763372]
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OUTPUT 2>>> Skip-gram Embedding for 'great': 

[-0.00536227  0.00236431  0.0510335    

0.09009273 -0.0930295  -0.07116809 0.06458873   

0.08972988 -0.05015428 -0.03763372]

Compare the embeddings for ‘great’ based on CBOW and skip- 

gram models using the Gensim library, which provides an efficient code 

implementation of Word2Vec for training and using word embeddings.

 GloVe: Global Vectors for Word Representation

GloVe is an unsupervised machine learning algorithm that was first 

presented in 2014 at a conference organized in Doha, Qatar. GloVe is used 

to generate vector representations (word embeddings) of words. GloVe 

contains pre-defined dense vectors for approximately over 6 billion words 

of English literature, including some general-use characters like commas, 

braces, and semicolons. Users can utilize a pre-trained GloVe embedding 

in various dimensions, such as 50-d, 100-d, 200-d, or 300-d vectors, 

depending on the availability of computational resources and the task 

requirements. Here, d represents dimension. 50-d would indicate a vector 

of size 50, and so on.

The main difference between Word2Vec and GloVe is that Word2Vec 

learns word embeddings (or word vectors) by predicting context words 

using skip-gram or CBOW models (utilizing large corpora). Its focus is 

on the local context. GloVe utilizes global word co-occurrence statistics 

to seize overall word relationships in its embeddings. GloVe model 

emphasizes global as well as local context. Word2Vec is generally faster 

and more efficient for context-specific NLP tasks because it dynamically 

captures word relationships during training. GloVe works great for 

capturing overall word relationships across an entire text dataset because it 

learns from global word co-occurrences (meaning how often words appear 

together across many sentences). This way, GloVe captures a broader 

understanding of word meanings and their relationships.
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Like Word2Vec, the word embeddings provided by GloVe can be used 

in multiple NLP tasks like NER, machine translation, question-answering 

systems, document similarity, and document clustering.

Below is a code demo (Listing 7-6) that utilizes pre-trained GloVe 

embeddings to find similar words.

# Using pre-trained GloVe embeddings to find similar words.

# Necessary steps before you run the the code

 1. Go to the GloVe project page.

 2. Download the glove.6B.zip file. It contains word 

embeddings of multiple dimensions like 50d, 100d, 

and so on.

 3. Unzip the file to see glove.6B.50d.txt.

 4. Place glove.6B.50d.txt in the same directory as your 

code file, or specify the correct path in the code if it’s 

located elsewhere.

Listing 7-6. Program Using GloVe embeddings to find similar words

# Import necessary libraries

import numpy as np  # For numerical operations

from sklearn.metrics.pairwise import cosine_similarity   

# For similarity calculation

# Load GloVe embeddings

# Path to GloVe file (ensure this file is in the directory or 

provide the correct path)

embeddings_index = {}  # Dictionary to store word vectors

# Open and read the GloVe file

with open('glove.6B.50d.txt', encoding='utf-8') as f:

    for line in f:
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         values = line.split()  # Split each line into 

components

        word = values[0]  # First item is the word

         vector = np.asarray(values[1:], dtype='float32')   

# Remaining items are vector values

         embeddings_index[word] = vector  # Add word and its 

vector to dictionary

# Check if "scholar" exists in the GloVe vocabulary

if "scholar" in embeddings_index:

     scholar_vector = embeddings_index["scholar"]  # Get the 

vector for "scholar"

# Calculate cosine similarity between "scholar" and all 

other words

similar_words = {}  # Dictionary to store words and their 

similarity scores

for word, vector in embeddings_index.items():

     similarity = cosine_similarity([scholar_vector], [vector])

[0][0]  # Compute similarity

    similar_words[word] = similarity  # Add word and similarity 

score to dictionary

# Sort words by similarity score in descending order

sorted_similar_words = sorted(similar_words.items(), key=lambda 

x: x[1], reverse=True)

# Print top 10 words similar to "scholar"

print("Top words similar to 'scholar':")

# Skip the first word as it will be "scholar" itself

for word, similarity in sorted_similar_words[1:11]:

    print(f"{word}: {similarity}")

OUTPUT >>> Top words similar to 'scholar':
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historian: 0.8646411895751953

philosopher: 0.8056567311286926

poet: 0.7976035475730896

author: 0.7962594032287598

professor: 0.7924675345420837

eminent: 0.7883749008178711

literature: 0.7770242094993591

theologian: 0.7625619173049927

sociologist: 0.7605342864990234

linguist: 0.7595699429512024

Note that similarity stands for how close in meaning two words are 

based on the cosine similarity between their vectors. Values close to 1 

means words are closer in meaning.

 Advances like BERT and GPT

There have been significant advances in NLP in recent years. BERT stands 

for Bidirectional Encoder Representations from Transformers. It was 

first introduced in 2018. The most popular model in the GPT category is 

ChatGPT. It was first released in 2022. Both BERT and GPT come under the 

category of large language models (LLM) and are based on transformer 

models. LLMs are trained on massive amounts of data and can perform 

various tasks, such as text translation and text generation, with minimal 

fine-tuning. This chapter focuses on BERT; an upcoming is dedicated to 

GPT-based models.

BERT is a kind of neural network based on transformer architecture. 

It’s a pre-trained model that can be fine-tuned for specific NLP tasks 

by simply adding a new layer or a small network on top of BERT’s 

architecture. The BERT model is available in various sizes to accommodate 

different computational resource capacities. The following are the BERT 

models used in practice.
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• BERT-Base is a smaller BERT model. It consists of 12 

layers and 110 million parameters. It strikes a balance 

between performance and speed for general NLP tasks.

• BERT-Large is a larger version of BERT. It consists 

of 24 layers and 340 million parameters. This BERT 

model offers higher accuracy, but it requires more 

computational resources.

• DistilBERT is a smaller and faster variant of BERT with 

around 66% of BERT’s size. This BERT model maintains 

high accuracy while enabling faster processing time.

• TinyBERT is a compact BERT model. It is designed for 

fast performance and low memory usage. It has fewer 

network layers and hidden units.

• ALBERT is a lightweight version of BERT. It shares 

parameters across layers, thereby reducing model size 

while maintaining performance.

The BERT-Base model is a widely used general-purpose BERT model 

for a variety of NLP tasks. Its wide range of uses is justified because it 

maintains a reasonable performance and speed while consuming fewer 

computational resources.

The Hugging Face framework streamlines working with pre-trained 

models, such as BERT, GPT, and others. Listing 7-7 is a code demo on 

how the Hugging Face framework can be utilized for NLP tasks. For this 

purpose, we utilize the bert-base-uncased model. It is a version of BERT- 

Base, which does not differentiate between uppercase and lowercase 

letters. This book concentrates more on the usage of BERT and GPT rather 

than their internal architecture.
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Listing 7-7. Code demo for sentiment analysis

"""

Code demo for sentiment analysis using the sentence "Ramesh 

is my friend and he is a great scholar" with Hugging Face 

and BERT.

"""

import torch

from transformers import BertTokenizer, 

BertForSequenceClassification, pipeline

# Set random seed for reproducibility

torch.manual_seed(42)

# Load pre-trained BERT model and tokenizer

model = BertForSequenceClassification.from_pretrained('bert- 

base- uncased', num_labels=2)

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# Create a sentiment-analysis pipeline

nlp = pipeline('sentiment-analysis', model=model, 

tokenizer=tokenizer)

# Test sentence

sentence = "Ramesh is my friend and he is a great scholar."

# Get sentiment prediction

result = nlp(sentence)

# Print result

print(result)

OUTPUT: [{'label': 'LABEL_1', 'score': 0.5709643363952637}]

The model is predicting LABEL_1, meaning a positive sentiment, 

using 57.09% confidence.
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7.4.3  Case Studies and Applications

Let’s examine a business case and demonstrate its code implementation.

The owner of a large customer service platform (a large e-commerce 

company) wants to analyze incoming customer queries with an aim to 

improve response times and accuracy. He is a technology enthusiast, 

and he wants to test BERT and Hugging Face in this customer service 

application. With the help of this application, he wants to categorize 

customer queries into returns, product inquiries, and complaints. It allows 

him to route specific customer queries directly to the specialized teams. 

He wants to use BERT to pick up the context and content of each query and 

provide targeted responses. He hopes with such an implementation, his 

establishment can streamline customer service, cut operational costs, and 

enable more efficient handling of high query volumes.

Our code demo (Listing 7-8) does the following tasks.

• Loads pre-trained BERT models and tokenizers

• Tokenizes sample data queries

• Sets up minimal training to fine-tune BERT on 

sample data

• Uses fine-tuned model in Hugging Face pipeline for 

predictions

• Maps prediction results to defined categories

Listing 7-8. Program for the business case

# Code demo for the business case.

# Install these libraries if not dopne already.

!pip install transformers torch

from transformers import BertTokenizer, BertForSequence 

Classification, Trainer, TrainingArguments, pipeline
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import torch

from torch.utils.data import DataLoader, Dataset

import numpy as np

# Define sample data

data = [

     {"text": "I want to return my order", "label": 0},   

# returns

     {"text": "Can I know the delivery status?", "label": 1},   

# product inquiries

     {"text": "My product is defective", "label": 2}   

# complaints

]

# Map label indices to categories

label_map = {0: "returns", 1: "product inquiries", 2: 

"complaints"}

# Load pre-trained BERT tokenizer and model

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

model = BertForSequenceClassification.from_pretrained('bert- 

base- uncased', num_labels=3)

# Tokenize and preprocess data

class SampleDataset(Dataset):

    def __init__(self, data, tokenizer):

        self.data = data

        self.tokenizer = tokenizer

    def __len__(self):

        return len(self.data)

    def __getitem__(self, idx):

        item = self.data[idx]
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         inputs = self.tokenizer(item["text"], truncation=True, 

padding='max_length', max_length=32, return_

tensors="pt")

         inputs = {k: v.squeeze() for k, v in inputs.items()}   

# Squeeze to remove extra dimension

         inputs['labels'] = torch.tensor(item["label"], 

dtype=torch.long)

        return inputs

# Create Dataset and DataLoader

dataset = SampleDataset(data, tokenizer)

# Set up minimal training for fine-tuning

training_args = TrainingArguments(

    output_dir="./results",

    evaluation_strategy="no",

    per_device_train_batch_size=2,

    num_train_epochs=20,

)

trainer = Trainer(

    model=model,

    args=training_args,

    train_dataset=dataset,

)

# Train the model (this is minimal; actual fine-tuning requires 

more data and epochs)

trainer.train()

# Use Hugging Face pipeline for prediction

nlp_pipeline = pipeline("text-classification", model=model, 

tokenizer=tokenizer)
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# Predict categories for new queries

new_queries = ["I received the wrong item", "Where is my 

package?", "Can I return this?", "I received a defective 

product"]

for query in new_queries:

    result = nlp_pipeline(query)[0]

     predicted_label = int(result['label'].split('_')[-1])   

# Get label index from 'LABEL_0', 'LABEL_1', etc.

     category = label_map[predicted_label]  # Map label to 

category

     print(f"Query: '{query}'\nPredicted Category: 

{category}\n")

OUTPUT >>>

Query: 'I received the wrong item'

Predicted Category: complaints

Query: 'Where is my package?'

Predicted Category: product inquiries

Query: 'Can I return this?'

Predicted Category: product inquiries

Query: 'I received a defective product'

Predicted Category: complaints

In this code, Hugging Face is used to do the following.

• Loads the pre-trained BERT model

• Provides a tokenizer for text preprocessing

• Sets up text classification (pipeline function)

• Encapsulates the prediction process in a single call

• Maps results to the defined categories
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7.5 Chapter Recap

This chapter explored the essence of pragmatic analysis. We mainly 

focused on discourse integration, distributional semantics, and word 

embeddings. We discussed these broad topics in depth from conceptual, 

implementation, and practical applications points of view. These insights 

can help you apply these practices and your future NLP endeavors.

The current NLP focus areas are understanding multimodality, 

platform-specific communication styles, identity and community 

building, and politeness dynamics in digital interactions. Multimodality 

concentrates on how text, images, videos, and emojis work together 

to communicate meaning online. Popular web platforms like X and 

Instagram have developed their own style of communicating, using 

language, and sharing ideas. Some leading researchers are focusing 

on how each platform influences users’ communication styles. The 

current NLP research areas also focus on politeness and ethical aspects 

of natural languages. All this research is focused on online and social 

media communications between groups of people. Current trends suggest 

that future NLP researchers will likely focus more on areas such as AI 

in communication, cross-cultural interaction, the ethics of interaction, 

technological advancements, and digital literacy.

7.1 Reference

[1] Sharma, P., and Nagashree, N. (2022). “Survey on 

Natural Language Processing and its Applications.” 
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CHAPTER 8

Transformers, 
Generative AI, 
and LangChain

8.1  Introduction to Transformers in NLP

The transformer architecture was introduced in 2017 by Vaswani et al. in 

their groundbreaking paper, “Attention Is All You Need.”

This paper revolutionized the fields of neural network architectures 

and natural language processing (NLP). This introductory paper on 

transformer architectures explores the basic architecture and workings of 

transformers. Transformers use self-attention mechanisms to change one 

complete sentence into another. Transformer models are fundamentally 

different from conventional deep learning models, such as RNNs and 

LSTMs, which process a text sentence word by word. Take the example 

of a simple English sentence, “I left my book on the left side of the table.” 

The word left has entirely different meanings in the same sentence. As 

RNNs and LSTMs process the sentence word by word, they may fail to 

pick up the context-specific meanings of the word left. Transformers 

process entire sentences using self-attention, which enables them to 

https://doi.org/10.1007/979-8-8688-1582-9_8#DOI
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understand any input text more quickly and accurately grasp the context-

specific meaning of words. This way, transformer models can efficiently 

handle comparatively long sentences and complex relationships in any 

given input text. By the way, self-attention helps models to work out the 

important words (for meaning), no matter how far they are apart in the 

input sentence. Self-attention mechanisms help the models to better 

handle NLP tasks that involve language translation and text generation.

Let’s briefly discuss the basics of the otherwise complex architecture of 

a transformer model. It comprises mainly an encoder, decoder, self- 

attention mechanism, and feed-forward neural network layers. If you need 

the full details, we suggest you refer to the original paper that introduces 

the transformer models to the world (see Figure 8-1).

Figure 8-1. Transformer model architecture (source)

Before discussing the four layers of a transformer model, let’s focus on 

the following basic terminology in this connection.

• Self-attention: It helps the model to have a global look 

at all the words in any input sentence to understand 

how the words in the sentence relate to each other in 
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the proper context. It helps the transformer model to 

focus on important words, irrespective of their position 

in the input sentence.

• Cross-attention: It facilitates the transformer model 

to connect the input sentence to the output sentence 

being generated by the model. Cross-attentions ensure 

the output sentence is created based on the right parts 

of the input sentence.

The following is a brief description of the basic elements of a 

transformer model.

• Embedding: It converts the given input words into 

numerical vectors (also called embeddings) that can be 

interpreted (understood) by the transformer model.

• Encoder: The input is put in the form of sentences 

to the encoder. It processes it through layers. Each 

of these layers employs a self-attention mechanism 

to focus on important words in any given input 

sentence. Then, the same self-attention mechanism 

takes the input sentence through the feed-forward 

networks. This whole process transforms the data into 

meaningful representations.

• Decoder: The final output sentence is generated by the 

decoder. It takes the input from the processed data of 

the encoder. The decoder also employs the self- 

attention mechanism to comprehend the generated 

words. It uses cross-attention to line up with the 

encoder’s input.

• Self-attention mechanism: (This concept was 

discussed before introducing the model layers.)
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• Feed-forward neural network: It is a basic artificial 

neural network (ANN) that works with each encoder 

and decoder layer to transform input data. This helps 

identify complex patterns in the data as it is processed.

To summarize the workings of transformer models, all these elements 

work together to convert any given input sentence into an output sentence. 

It is the job of the embedding layer to convert input words to numerical 

vector formats. Then comes the encoder that uses self-attention to retrieve 

the important words, their relationships, and the context. Feed-forward 

networks help encode in this process that finally extracts meaningful 

patterns from the input sentence. Next comes the decoder, which takes 

inputs from the data processed by the encoder to refine the output 

sentence step by step. Elements such as cross-attention and self- 

attention aid the decoder in this process. Now comes the output layer that 

transforms the processed data into the final words that are presented in 

the form of the output sentence.

8.1.1  Evolution of NLP: From Traditional Models 
to Transformers

The first significant foundational stone in NLP was laid by the Georgetown-

IBM experiment in 1954, which successfully translated 60 Russian 

sentences into English using rule-based techniques. Until the 1970s, it was 

considered an era of rule-based NLP systems, mainly deployed for machine 

translation. During this period, researchers developed complex sets of 

linguistic rules, enabling computers of the era to process human language. 

The 1980s and 1990s are marked as an era of development in statistical 

methods and machine learning algorithms for the machine processing of 

human languages. Hidden Markov Models and support vector machines 

especially prevailed during this period in the NLP domain. These 

techniques allowed more flexible and data-driven approaches to NLP.
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From the early 2000s to the present, deep learning-based models have 

become mainstream for processing human languages. In fact, neural 

networks have revolutionized the field of NLP by enabling complex tasks 

such as speech processing, improved machine translations, and social 

media sentiment analysis. Neural network models, such as recurrent 

neural networks (RNNs), long short-term memory (LSTM) networks, and 

transformers have played a key role in these advancements. Figure 8-2 

depicts these advances in the NLP domain from the 1950s until 2020. From 

2020 onward, we have all witnessed the emergence of game-changing 

GenAI models, such as ChatGPT, and many more.

Figure 8-2. The evolution of NLP models from translation (early 
1950s) to transformers (2017)
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8.1.2  Overview of BERT by Google

BERT (Bidirectional Encoder Representations from Transformers) was 

made available for general public usage in 2018. BERT was released as an 

open-source license by Google. BERT is a widely used transformer-based 

model. It is grounded on the transformer model architecture, explicitly its 

encoder module. BERT is designed to recognize the context of words in 

sentences. BERT processes words in the context of entire input sentences 

and does not look at words one by one, as done by some techniques 

employed for NLP tasks. This way, BERT can pick up the word’s meaning 

even if it appears to be vague. BERT excels in tasks such as sentiment 

analysis, question answering, and text classification. Fine-tuned BERT 

variants are also available for specialized domains, such as biology, data 

science, and medicine. Today, BERT is available in many variants, each 

designed with a specific trait. Some of its variants are as follows.

• RoBERTa advances BERT’s training by altering vital 

hyperparameters.

• DistilBERT reduces BERTBASE to a model having 

fewer number parameters, whereas it preserves most of 

its benchmark scores while doing so.

• TinyBERT is a reduced model with even fewer 

parameters compared to DistilBERT.

• ALBERT utilizes a shared parameter across layers and 

substitutes the subsequent sentence prediction task 

with the sentence-order prediction task.

• ELECTRA applies the clues of GAN (generative 

adversarial networks) to the masked language model 

task. ELECTRA learns faster by having one model 

create fake words and another model detect if they are 

real or fake.

Chapter 8  transformers, Generative ai, and LanGChain



343

RoBERTa is widely considered suitable for general-purpose NLP tasks. 

It is the best for tasks that require high accuracy and strong language 

comprehension. To use RoBERTa, resource availability should not be a 

constraint. DistilBERT is much smaller in size than RoBERTa, and it is 

the most popular variant of BERT because it balances finely between 

performance and efficiency. DistilBERT needs much fewer computational 

resources (than RoBERTa) and still maintains around 97% of BERT’s 

accuracy. Due to these advantages, DistilBERT is used for many practical 

applications across domains. DistilBERT is especially useful when 

resources are limited. Our code demo uses DistilBERT as the sample 

program is being developed and run on a modest business computer.

Note masked language modeling (mLm) is a technique where 

certain words in an input sentence are randomly masked. the model 

is then trained to predict the missing words based on the surrounding 

context. a Gan is an ai variant that uses two competing models: one 

produces false data and the other detects if the fake data produced 

by the first model is real or fake. eLeCtra advances learning speed 

by substituting masked words with fake ones and then training the 

model to spot them. it permits eLeCtra to learn from every word and 

not by just the limited words it guesses.

8.1.3  Code to Demonstrate the Use of DistilBERT 
Using PyTorch

Listing 8-1 depicts the Code Example on How to Use DistilBERT with PyTorch

Listing 8-1. Making use of Use of DistilBERT with PyTorch

# Install the following libraries if not done already.

#!pip install transformers datasets torch

# Install PyTorch for CPU-only support
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#!pip install torch torchvision torchaudio!

#!pip install --user "accelerate>=0.26.0"

# For GPU Support (NVIDIA CUDA)

#!pip install torch torchvision torchaudio --index-url https://

download.pytorch.org/whl/cu118

#!pip install --user "accelerate>=0.26.0"

# This program shows how to fine-tune and use the DistilBERT 

model for sentiment analysis on the IMDb dataset..

# It involves:

# 1. Loading the IMDb dataset and preparing it.

# 2. Tokenizing the text data using DistilBERT's tokenizer.

# 3. Fine-tuning the pre-trained DistilBERT model for binary 

classification.

# 4. Evaluating the fine-tuned model and making predictions on 

new text.

# Explanation of imports:

# - DistilBertTokenizer: Used to tokenize input text into the 

format required by the DistilBERT model.

# - DistilBertForSequenceClassification: Pre-trained DistilBERT 

model tailored for sequence classification tasks.

# - Trainer: High-level API for training and evaluating Hugging 

Face models.

# - TrainingArguments: Configuration for the Trainer, including 

batch size, epochs, learning rate, etc.

# - load_dataset: Part of the `datasets` library, used to load 

and manage datasets like IMDb for training and evaluation.

from transformers import DistilBertTokenizer, 

DistilBertForSequenceClassification, Trainer, TrainingArguments

from datasets import load_dataset

# Final code follows

# Step 1: Load Dataset
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from datasets import load_dataset

dataset = load_dataset("imdb")

# Split into training and validation sets

train_data = dataset["train"].shuffle(seed=42).

select(range(2000))  # Select smaller subset for demo

val_data = dataset["test"].shuffle(seed=42).select(range(500))

# Step 2: Load Tokenizer

from transformers import DistilBertTokenizer

tokenizer = DistilBertTokenizer.from_pretrained("distilbert- 

base- uncased")

# Tokenize the data

def tokenize_function(examples):

     return tokenizer(examples["text"], padding="max_length", 

truncation=True)

train_data = train_data.map(tokenize_function, batched=True)

val_data = val_data.map(tokenize_function, batched=True)

# Set format for PyTorch

train_data.set_format(type="torch", columns=["input_ids", 

"attention_mask", "label"])

val_data.set_format(type="torch", columns=["input_ids", 

"attention_mask", "label"])

# Step 3: Load Model

from transformers import DistilBertForSequenceClassification

model = DistilBertForSequenceClassification.from_pretrained(

    "distilbert-base-uncased", num_labels=2

)

# Step 4: Define Training Arguments

from transformers import TrainingArguments
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training_args = TrainingArguments(

    output_dir="./results",

     evaluation_strategy="epoch",  # 'eval_strategy' for updated 

versions

    learning_rate=2e-5,

    per_device_train_batch_size=16,

    per_device_eval_batch_size=16,

    num_train_epochs=3,

    weight_decay=0.01,

    logging_dir="./logs",

    logging_steps=10,

    save_strategy="no"

)

# Step 5: Trainer Object

from transformers import Trainer, TrainingArguments

trainer = Trainer(

    model=model,

    args=training_args,

    train_dataset=train_data,

    eval_dataset=val_data,

     processing_class=tokenizer,  # Updated to 'processing_

class' to avoid deprecation warning

)

# Step 6: Train and Evaluate

trainer.train()

trainer.evaluate()

# Step 7: Inference

def predict(text):

     tokens = tokenizer(text, return_tensors="pt", 

truncation=True, padding="max_length", max_length=512)
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    outputs = model(**tokens)

    prediction = outputs.logits.argmax(-1).item()

    label = "Positive" if prediction == 1 else "Negative"

    return label

# Example prediction 1

text = "The movie was fantastic! The plot and acting were 

top-notch."

print(f"Review: '{text}'\nPrediction: {predict(text)}")

Some weights of DistilBertForSequenceClassification were not 

initialized from the model checkpoint at distilbert- 

base- uncased and are newly initialized: ['classifier.bias', 

'classifier.weight', 'pre_classifier.bias', 'pre_classifier.

weight']

You should probably TRAIN this model on a down-stream task to 

be able to use it for predictions and inference.

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Review: 'The movie was fantastic! The plot and acting were 

top-notch.'

Prediction: Positive

# Example prediction 2

text = "The movie was super boring! The plot and acting were 

terrible."

print(f"Review: '{text}'\nPrediction: {predict(text)}")

Review: 'The movie was super boring! The plot and acting were 

terrible.'

Prediction: Negative

# Example prediction 3

text = "This morning I am not able to decide what to do with 

the day."

print(f"Review: '{text}'\nPrediction: {predict(text)}")
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Review: 'This morning I am not able to decide what to do with 

the day.'

Prediction: Negative

# Example prediction 4

text = "The movie is neighther good nor bad."

print(f"Review: '{text}'\nPrediction: {predict(text)}")

Review: 'The movie is neighther good nor bad.'

Prediction: Negative

# Example prediction 4

text = "The movie was neutral."

print(f"Review: '{text}'\nPrediction: {predict(text)}")

Review: 'The movie was neutral.'

Prediction: Negative

# Step 8: Save the Model and Tokenizer

output_dir = "C://AA SK 53//A INDUS//Papers with Murugan///NLP 

Book//Python Tutorials//Chapter 8//saved_model_8.1"

model.save_pretrained(output_dir)

tokenizer.save_pretrained(output_dir)

print(f"Model and tokenizer saved to {output_dir}")

Model and tokenizer saved to C://AA SK 53//A INDUS//Papers 

with Murugan///NLP Book//Python Tutorials//Chapter 8//saved_

model_8.1

# Load the saved model and make predictions

from transformers import DistilBertForSequenceClassification, 

DistilBertTokenizer

# Step 1: Load the saved model and tokenizer

output_dir = "C://AA SK 53//A INDUS//Papers with Murugan///NLP 

Book//Python Tutorials//Chapter 8//saved_model_8.1//"

loaded_model = DistilBertForSequenceClassification.from_

pretrained(output_dir)
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loaded_tokenizer = DistilBertTokenizer.from_

pretrained(output_dir)

# Step 2: Define the prediction function

def predict_with_loaded_model(text):

     tokens = loaded_tokenizer(text, return_tensors="pt", 

truncation=True, padding="max_length", max_length=512)

    outputs = loaded_model(**tokens)

    prediction = outputs.logits.argmax(-1).item()

    label = "Positive" if prediction == 1 else "Negative"

    return label

# Step 3: Make a prediction

example_text = "The movie was boring and lacked excitement."

print(f"Review: '{example_text}'\nPrediction: {predict_with_

loaded_model(example_text)}")

Review: 'The movie was boring and lacked excitement.'

Prediction: Negative

BERT is based on the concept of transfer learning, which is like first 

learning a bicycle and then transferring the learnings on the bicycle 

to learn a bike. Naturally, if you know how to ride a bicycle, learning a 

motorbike or a scooter becomes a lot easier. In the technology language, 

transfer learning is as follows. You first train a large NLP model on very 

large text corpora (large text collections), including Wikipedia and many 

more. This was the large NLP model under consideration here, which 

learns how words and sentences (in a huge training text) connect. Once 

the NLP model develops the understanding of language (like English) 

in general, later we can slightly tweak the already trained NLP model 

to perform specific tasks like finding a text’s emotion (popularly known 

as sentiment analysis) or making a question answering system in the 

domains like finance, tourism, healthcare and many more.
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BERT is a great example of a system working on the concepts of 

transfer learning. BERT is trained on enormous text data. This way, it 

develops a great understanding of the language in which it is trained. Later, 

we can slightly alter BERT and train it with our data (new problem-specific 

data) to efficiently perform NLP tasks like text classification, named 

entity recognition, language translation, summarization, and paraphrase 

detection. This retraining or tweaking of a trained BERT model can be 

done using a very small amount of data.

8.1.4  Multimodal NLP: Combining Text 
with Images, Audio, and More

Multimodal NLP combines diverse forms of information, such as text, 

speech, images, and videos, as inputs to make NLP tasks smarter. By 

combining different types of information as input, machines can better 

understand the communication between humans, as humans are 

also having similar capabilities. For example, to comprehend the class 

lessons, one may utilize class lectures, written texts, pictures, and videos 

for support. Another example of this is in face-to-face meetings. Facial 

expressions are also available, which can help better in another person’s 

mood detection. In a similar fashion, machines can enhance language 

tasks, such as translation, by incorporating pictures and videos to convey 

meanings more effectively. Multimodal NLP is a relatively new area of 

research.

The following are some of the tools available for multimodal NLP.

• OpenAI CLIP links images and text. Its usage is mainly 

in image search or visual language understanding.

• Google Vision transformer (ViT) links vision 

and language tasks. This tool refines the model’s 

performance in image classification and the generation 

of automatic captions.
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• Multimodal BERT (ViLBERT) extends BERT so that 

it can process both visual and textual data. This tool is 

especially useful for NLP tasks such as visual question 

answering and automatic image captioning.

• DeepMind Perceiver is a versatile model capable 

of handling various input data types, including text, 

images, and audio. It is highly effective in multimodal 

learning.

• TensorFlow Multimodal Toolkit (TF-MMT) is an 

all-inclusive framework for developing and training 

multimodal NLP models. It is useful for NLP tasks such 

as emotion detection and the analysis of multimedia 

content.

8.1.5  Demonstrating the Use of OpenAI CLIP 
for Multimodal Understanding

The theme of Listing 8-2 demonstrates the use of OpenAI CLIP for 

multimodal understanding, specifically to compute text-to-image 

similarity. The program assesses the degree to which various text 

descriptions align with a given image by utilizing CLIP’s capability to 

integrate textual and visual representations.

Listing 8-2. Code to Demonstrate the use OpenAI CLIP  for 

Multimodal Understanding

import torch

from transformers import CLIPProcessor, CLIPModel

from PIL import Image

import matplotlib.pyplot as plt
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# Load the CLIP model and processor

model = CLIPModel.from_pretrained("openai/clip-vit-base- 

patch16")

processor = CLIPProcessor.from_pretrained("openai/clip-vit- 

base-patch16")

# Function to display the image

def display_image(image_path):

    img = Image.open(image_path)

    plt.imshow(img)

    plt.axis('off')

    plt.show()

# Example image and text for image-to-text search

image_path = 'dog_with_person_on_beach.jpg'  # Replace with 

your image path

text_descriptions = ["A dog running on the beach",

                     "A golden retriever in a park",

                     "A person surfing on a beach",

                     "A sunset over the ocean"]

# Preprocess image and text

image = Image.open(image_path)

inputs = processor(text=text_descriptions, images=image, 

return_tensors="pt", padding=True)

# Get image and text features

with torch.no_grad():

    outputs = model(**inputs)

# Calculate similarity

image_features = outputs.image_embeds

text_features = outputs.text_embeds

similarities = torch.cosine_similarity(image_features, text_

features)
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# Show similarity scores

for i, text in enumerate(text_descriptions):

    print(f"Text: '{text}' | Similarity: {similarities[i]:.4f}")

# Display the image

display_image(image_path)

Text: 'A dog running on the beach' | Similarity: 0.3106

Text: 'A golden retriever in a park' | Similarity: 0.1987

Text: 'A person surfing on a beach' | Similarity: 0.2373

Text: 'A sunset over the ocean' | Similarity: 0.2173

Output of Listing 8-2, “A dog running on the beach,” has the highest 

similarity score (0.3106), indicating it best matches the image. This 

suggests the image most likely depicts a scene closely related to the given 

description, highlighting CLIP’s effectiveness in text-to-image relevance.

8.1.6  Text-to-Image Search Using OpenAI’s 
CLIP Model

Listing 8-3 demonstrates text-to-image search using OpenAI’s CLIP model. 

It matches a given text description with a set of images by computing 

cosine similarity between their embeddings. The most relevant image is 

then identified and displayed, highlighting CLIP’s capability to understand 

the connection between text and images.
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Listing 8-3. Program for  Text-to-Image Search Using CLIP Model

import torch

from transformers import CLIPProcessor, CLIPModel

from PIL import Image

# Load the CLIP model and processor

model = CLIPModel.from_pretrained("openai/clip-vit-base- 

patch16")

processor =  CLIPProcessor.from_pretrained("openai/clip-vit- 

base-patch16")

# Example images and text description for text-to-image search

images = ["dog_with_person_on_beach.jpg", "empire_state.

jpg", "running_dog_on_beach.jpg", "dog_play.jpg", "example_

image.jpg"]

text_description = "A dog running on the beach in the sunshine"

# Preprocess the text

inputs_text = processor(text=[text_description], return_

tensors="pt", padding=True)

# List to store similarities for each image

image_similarities = []

# Loop through images

for image_path in images:

    # Open image

    image = Image.open(image_path)

    # Preprocess the image and get features

     inputs_image = processor(text=[text_description], 

images=image, return_tensors="pt", padding=True)

    with torch.no_grad():

        outputs = model(**inputs_image)
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    # Calculate similarity

    image_features = outputs.image_embeds

    text_features = outputs.text_embeds

     similarity = torch.cosine_similarity(image_features, text_

features)

    image_similarities.append((image_path, similarity.item()))

# Sort images by similarity score

sorted_images = sorted(image_similarities, key=lambda x: x[1], 

reverse=True)

# Display the most relevant image

best_image_path = sorted_images[0][0]

# Assuming display_image is a function to display the image. 

Replace with your own method if needed.

display_image(best_image_path)

print(f"The most relevant image based on the description is: 

{best_image_path}")

The most relevant image based on the description is running_dog_on_

beach.jpg. Output of Listing 8-3.
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8.2  Overview of GPT

GPT is the acronym for generative pre-trained transformer, a noteworthy 

leap in NLP and AI in general. The model works with advanced machine 

learning techniques and generate human-like conversations when 

appropriate prompts are given. GPT family of models like GPT-2, GPT-3, 

and GPT-4 have come up (comparatively) recently with the development 

efforts of OpenAI. These models demonstrate remarkable capabilities 

in NLP tasks, including text generation, summarization, and machine 

translation. These and many other such models (by multiple companies) 

are popularly known as GenAI (generative AI) models.

Let’s start with a brief paragraph on the evolution of GenAI systems, 

starting with RNNs.

8.2.1  Evolution of Text Generation Models: 
From RNNs to GPT

RNNs (early 1980s) were one of the significant steps in text processing. 

RNNs are capable of processing text serially while preserving hidden 

steps across many timesteps. RNNs typically struggle with processing 

long queues of text data (long-term dependencies due to the problem 

of vanishing gradients). The development of LSTMs and GRUs, 

as improvements over RNNs, enables them to handle long-term 

dependencies. Then, Seq2Seq models with attention mechanisms were 

introduced, allowing NLP models to focus on specific important parts 

of the input text. This innovation revolutionized NLP tasks, including 

text summarization and machine translation. Despite these milestone 

developments, NLP models still lacked the capability to handle longer 

contexts, and they were not scalable to the required extent. This book does 

not delve into the fine details of neural networks and deep learning.
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Following a breakthrough in the development of transformer models 

in 2017, text processing, particularly text generation, has made significant 

progress. The self-attention mechanisms of transformer models not 

only enabled parallel processing but also made it possible to deal with 

longer contexts, a capability that was missing in the earlier models. The 

introduction of transformer models laid a strong foundation for the 

development of GPT models by OpenAI. GPT models were pre-trained on 

massive NLP datasets, and they could be fine-tuned for specific tasks. A 

few years later, the development of GPT2, GPt-3, and more recently GPT-4 

scaled up the capabilities of earlier such models by manifolds. These 

models are state-of-the-art when it comes to consistency and reasoning. 

Figure 8-3 depicts this evolution.
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Figure 8-3. The evolution of NLP models from RNNs to GPT-4

More recently, many other AI-focused companies, like Meta 

(Facebook’s parent company), have come up with their text generation 

models. Despite this, OpenAI’s models remain one of the most popular.

8.2.2  A Short Note on the Working of GenAI 
(LLMs) Models

GenAI models, like LLMs, are based on cutting-edge neural networks 

trained to generate human-like text. GenAI models use a transformer 

architecture that depends on self-attention mechanisms, and they use 
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embeddings to process the input text in a given context. These models 

analyze large datasets to learn patterns, grammar, and even factual 

knowledge. It enables them to accomplish NLP tasks like predicting the 

next word in a sentence or articulating (generating) text from prompts. 

Examples of GenAI models contain GPT and BERT-based LLMs.

These models first transform the input text into numerical vectors. 

These vectors are passed through multiple layers of the advanced neural 

network. Each layer works to refine the understanding of the text. These 

layers can capture relationships between words and phrases of the input 

text. The attention mechanisms in the model focus on the most relevant 

parts of the input. These mechanisms ensure a context-aware output. 

Training GenAI models involves predicting masked or next words, and 

further refining the fluency and accuracy of the models.

GenAI models contain billions of parameters (weights and biases). 

The enormous size of the parameters makes the models capable of 

diverse tasks, such as text summarization, translation, and creative 

writing. While GenAI models are extremely effective, they need vast 

computational resources. They can sometimes produce biased or factually 

incorrect outputs (called hallucinations) depending on the training 

data. A more detailed theoretical explanation of the workings of GenAI 

models is beyond the scope of this volume; the main focus of this book 

remains the application of concepts rather than going in-depth into the 

underlying theory.

8.2.3  Applications and Future Trends 
in Generative AI

The applications of GenAI models like ChatGPT are literally countless. 

These applications span diverse industries, including healthcare, 

hospitality, information technology, manufacturing, banking and finance 

(BFSI), advertising, marketing, sales, and media and entertainment.  
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In fact, separate volumes are written on applications of GenAI (and AI in 

general) in functional areas.

In the healthcare and pharmaceutical industries, GenAI finds 

applications in all functional areas. These applications include drug 

discovery, personalized treatments, predictive diagnosis, enhancing medical 

images, and simplifying tasks with patient notes and information. The 

applications of GenAI in the marketing, sales, and advertising industries 

include generating marketing text and images, creating personalized 

recommendations, crafting product descriptions, and enhancing search 

engine optimization. In the manufacturing domain, GenAI is utilized for 

code generation, programming language translation, code documentation, 

and automated testing. The BFSI domain utilizes GenAI for creating 

profitable investment strategies, portfolio management, communicating 

and educating clients and investors, drafting documentation, and 

monitoring regulatory compliance. This book does not provide a detailed 

description of these applications due to space constraints; refer to any 

standard text on the application of AI in functional areas.

AI and large language models, commonly referred to as LLMs, have 

immense potential to assist humanity in a wide range of tasks. But at the 

same time, GenAI models demand their responsible and ethical usage. 

Generative AI can produce content that is far removed from reality, 

commonly referred to as a hallucination. Hallucination raises ethical 

concerns about GenAI, including those related to truth, trust, and privacy. 

Apart from this, other challenges associated with GenAI models include 

algorithmic bias, data privacy, copyright infringement, misinformation, 

and job displacement. Many research groups across the globe are working 

on the challenges of GenAI. The current trends in this direction include 

responsible development, transparency, and fairness.

Generative AI is evolving at a rapid rate in its quest to create output 

and interactions that are personalized and human-like. Researchers are 

exploring GenAI interactions with edge computing and the Internet of 

Things (IoT). This can aid in real-time and localized content creation.
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In future AI-based products, we can expect reduced bias and lesser 

hallucination. With advancements in GenAI models, we can expect 

augmented creativity and capabilities to automate both complex and 

repetitive tasks. These developments in the near future are likely to 

advance efficiencies and reduce costs across the industry domains. 

Collaborating with AI tools and robots will become an everyday part of 

everyone’s lives.

Note edge computing processes data close to where it’s created. it 

is like processing localized data on your phone or a nearby computing 

device, rather than sending it to a remote server for processing. 

Let’s take an example of premium smartwatches that are capable 

of analyzing your heartbeat without the need for the internet. now 

let’s talk in brief about iot. it is a complex system of interconnected 

devices, such as smart bulbs, cars, or machines, that communicate 

with each other and exchange data (both ways) with the help of the 

internet. iot devices can be present anywhere, including homes, 

vehicles, factories, and many more. for example, a smart thermostat 

(for a home central air conditioner) utilizes the internet to periodically 

receive weather updates (all automatically) and regulate your home’s 

temperature within the comfortable limits of its inhabitants.

8.3  LangChain and OpenAI’s (GenAI) APIs

LangChain, when combined with the state-of-the-art GenAI APIs from 

OpenAI, signifies an influential way to build intelligent and dynamic 

applications for various business scenarios and complex workflows. 

LangChain is an open-source project launched in October 2022 by 

Harrison Chase. It offers a comprehensive framework for building 
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advanced workflows by integrating large language models (LLMs). 

LangChain can seamlessly connect with LLMs from OpenAI (and others) 

along with external data, tools, and logic. This combination is capable 

of producing state-of-the-art conversational applications that generate 

human-like responses. These applications are also useful in NLP tasks, 

such as content generation and decision support.

As discussed, OpenAI APIs act as tools for developers to utilize 

advanced AI models, like ChatGPT, in their applications and workflows 

(that can manage multistep processes). Such applications can comprehend 

input texts to create desired content, develop question-answer type bots 

for specific domains, perform text summarization, and even assist in 

translations. OpenAI APIs are user-friendly, and help developers add 

smart AI features to routine business applications. Applications (apps) 

developed by combining OpenAI APIs with LangChain support memory 

can remember previous conversations and process steps, helping the 

apps to better handle contexts. It creates a perfect foundation for creating 

applications such as chatbots, interactive systems, and decision-making 

tools. LangChain also supports human-like trendy AI agents (sometimes 

also referred to as agentic AI) that can take autonomous actions to 

complete a variety of tasks, as discussed later in this chapter.

LangChain is fundamentally a modular structure architecture. 

It permits the seamless integration of a variety of components that 

include prompts, memories, and chains. These are LangChain-specific 

terms, which is discussed later in this chapter. The modularity aspect of 

LangChain allows the creation of flexible applications while preserving 

clarity and simplicity. Additionally, LangChain supports a range of LLMs, 

including those from OpenAI, Azure, Anthropic, and Google Cloud. 

OpenAI’s LLMs, being one of the most popular, are featured in this book.

You need not be an AI expert to work with OpenAI APIs. Basic 

knowledge of programming with languages like Python is sufficient to 

produce trendy and sophisticated applications with AI features using 

these APIs.
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8.3.1  Setting Up the Environment

Before you use LangChain to work with OpenAI functions, a suitable 

environment for development purposes needs to be created. The following 

four simple steps serve as a guide for you to create a Python environment 

with the required libraries installed.

 1. Create a virtual environment for your project.

First, you need to navigate to the project folder 

on your Windows machine and create the virtual 

environment using the following environment.

Activate the environment using the following 

command on the prompt.

Windows: myenv\Scripts\activate

macOS/Linux: source langchain-env/bin/

activate

We use the Anaconda Python distribution, 

so we executed these commands on the 

Anaconda Prompt.

 2. Install required packages. Run the following 

command on the prompt to install LangChain and 

OpenAI Python client. All the following commands 

are run the same way.

 3. Get an OpenAI key. An OpenAI key is required to 

seamlessly interact with the OpenAI models. Follow 

these steps.

 a. Open an OpenAI account on the OpenAI official website.

 b. Navigate to the API section on your dashboard, where you 

can generate and also manage your OpenAI API keys.

 c. Keep these API keys for the security reasons.
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 4. Set the API key in the required environment. To 

get the OpenAI API keys, follow these simple steps.

 a. Hardcoding the API key into your code is not advisable for the 

security and integrity of your newly created key.

 b. The best practice is to set your API key as an environment 

variable as follows.

 c. Execute the following commands on your terminal. It 

temporarily sets the environment variable for the existing 

terminal session.

Windows: set OPENAI_API_KEY=′my-openai- api-key′

macOS/Linux: export OPENAI_API_KEY=′my-

openai- api-key′

Congratulations! Now, you are ready to create your favorite application 

using LangChain and OpenAI models. We develop the following sections 

step by step to create your dream AI applications.

8.4  Model I/O: Easily Interface 
with Language Models

Model input/output (I/O) serves as a framework within the LangChain 

system. It provides a structured approach to interacting with LLMs, 

such as OpenAI and others. Model I/O controls the flow of data to and 

from the models. It includes preparing input prompts and processing 

model outputs. This section focuses on the basic functions and syntax 

of LangChain to demonstrate how to create input prompt requests and 

handle the model outputs effectively. Advanced techniques like few- 

shot prompt templates are also covered. Few-shot prompt templates 

improve model responses by providing contextual examples. Additionally, 
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we discuss serialization methods for efficiently saving and loading 

prompts. By mastering these tools, you can build more robust and flexible 

applications that leverage the full potential of advanced AI models like 

ChatGPT from OpenAI.

Listing 8-4 is our first demo program portraying LangChain with 

OpenAI chat models. Chat models are more popular, so we are taking it as 

our first demo program.

""" In the following demo program, you may find many unknown 

terms. We have tried to explain them

within the program itself. No worries but! We will take up all 

of it in the below sections."""

Listing 8-4. Building a Dynamic Chat Assistant with LangChain and 

OpenAI’s Chat Models

"""This program shows how to use LangChain and OpenAI's chat 

models to create a smart assistant. It combines user input with 

instructions for the AI to give helpful answers."""

# You could store the openai key in the form of a string in a 

.txt file

# This way of storing the API key is not very secure, but 

suitable for your personal projects on local computers

# Below example will make it more clear for you

# Install the essential libraries if not done already

# !pip install openai langchain

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_

KEY.txt')

api_key = f.read()

# Test of api_key is copied correctly

# api_key

from langchain.chat_models import ChatOpenAI
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from langchain.prompts.chat import (

    ChatPromptTemplate,

    HumanMessagePromptTemplate,

    SystemMessagePromptTemplate

)

from langchain.schema import AIMessage, HumanMessage, 

SystemMessage

"""

Step 1: Import Necessary Modules

- `ChatOpenAI`: Enables interaction with OpenAI's language 

models like GPT-3.5 Turbo.

- `ChatPromptTemplate`: Combines system and human message 

templates into a conversation format.

- `HumanMessagePromptTemplate`: Represents the user's input.

- `SystemMessagePromptTemplate`: Represents instructions for 

the model, such as its role or behavior.

- `AIMessage`, `HumanMessage`, `SystemMessage`: Define 

different types of messages exchanged in the chat.

"""

# Initialize the Chat Model

chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7, 

openai_api_key=api_key)

"""

Step 2: Initialize the Chat Model

- `model`: Specifies the OpenAI model to use (e.g., 

`gpt-3.5-turbo`).

- `temperature`: Controls the randomness of the model's output 

(lower = more deterministic).

- `openai_api_key`: Passes the OpenAI API key to authenticate 

requests.
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"""

# Define the Chat Prompt Template

system_message = SystemMessagePromptTemplate.from_template(

    "You are a helpful assistant that provides concise and 

accurate answers."

)

"""

Step 3a: Define the System Message

- This message provides context or instructions to the AI, 

guiding its behavior.

- Here, the AI is instructed to act as a helpful and concise 

assistant.

"""

human_message = HumanMessagePromptTemplate.from_

template("{user_input}")

"""

Step 3b: Define the Human Message

- A placeholder `{user_input}` represents the user's input 

dynamically.

- It will later be replaced with actual text provided by 

the user.

"""

chat_prompt = ChatPromptTemplate.from_messages([system_message, 

human_message])

"""

Step 3c: Combine the Messages

- Combines `system_message` and `human_message` into a single 

structured prompt.

- This ensures the AI has instructions for the user's query.

"""
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# Prepare User Input

user_input = "Explain the difference between our solar system 

and one other well-known one"

"""

Step 4: Define the User Input

- The user's query is stored in a variable to dynamically 

populate the human message template.

"""

# Format the Prompt

messages = chat_prompt.format_messages(user_input=user_input)

"""

Step 5: Format the Prompt

- Replaces `{user_input}` in the human message template with 

the actual user query.

- Creates a structured message format combining the system and 

human messages.

"""

# Get Model Response

response = chat_model(messages)

"""

Step 6: Get the AI's Response

- Sends the formatted prompt to the model using the `chat_

model` instance.

- Receives the AI's response, stored in the `response` 

variable.

"""

# Display the AI Response

print("AI Response:", response.content)

"""
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Step 7: Display the AI Response

- Extracts the generated text (from the `content` attribute of 

`response`).

- Prints the AI's response to the console for the user to review.

"""

>>> OUTPUT

AI Response: Our solar system consists of the Sun, eight 

planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, 

Neptune), and various smaller celestial objects like moons, 

asteroids, and comets. It is located in the Milky Way galaxy.

One other well-known solar system is the TRAPPIST-1 system. 

TRAPPIST-1 is a star system located about 39 light-years 

away from Earth. It is known for having seven Earth-sized 

planets, three of which are located in the habitable zone 

where conditions might be right for liquid water to exist on 

the surface. This system is smaller and cooler than our Sun, 

and its planets are much closer to their star compared to the 

planets in our solar system.

"\nStep 7: Display the AI Response\n- Extracts the generated 

text (from the `content` attribute of `response`).\n- Prints 

the AI's response to the console for the user to review.\n"

""" We use gpt-3.5-turbo because it provides a balance between 

cost, speed, and quality. It is optimized for efficiency, 

making it ideal for real-time applications and widely adopted 

tasks that require robust yet economical solutions.

Other popular OpenAI models include gpt-4 for advanced 

reasoning, text-davinci-003 for high-quality outputs, and 

smaller models like curie, babbage, and ada for simpler tasks. 

Each model is tailored for specific needs, from cost-saving to 

handling complex scenarios. """
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8.4.1  Using LLMs with LangChain

Developers can leverage LangChain with LLMs and Chat Models to 

customize many factors like prompts, integrate memory, and link 

peripheral tools to augment the model capabilities. This section explores it 

hands-on to understand key steps and techniques.

Listing 8-5 is a simple demo program leveraging LangChain with LLMs.

Listing 8-5. Generating Success Tips with OpenAI’s LLM

"""This program uses OpenAI's language model to answer the 

question "How can I make my day successful?"""

# Read the openai api key from your text filE

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_

KEY.txt')

api_key = f.read()

# To avoid depricated method warnings, install the following if 

n ot done already

!pip install -U langchain-openai

from langchain_openai import OpenAI

# Initialize the LLM

my_llm = OpenAI(openai_api_key=api_key)

print(my_llm('How can I make my day successful?'))

OUTPUT 1

1. Start your day with a positive attitude: A positive 

mindset can set the tone for a successful day. Practice 

gratitude, affirmations, or meditation to start your day on a 

positive note.

2. Set realistic goals: Identify what you want to achieve 

for the day and set realistic goals. This will help you stay 

focused and motivated throughout the day.
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3. Plan your day: Take a few minutes to plan out your day, 

including tasks and appointments. This will help you stay 

organized and prioritize your tasks.

4. Take breaks: It's important to take breaks throughout the 

day to recharge and avoid burnout. Use your breaks to relax, 

stretch, or do something you enjoy.

5. Stay hydrated and nourished: Make sure to drink enough water 

and eat healthy meals and snacks throughout the day. This will 

help you stay energized and focused.

6. Stay organized and declutter: A cluttered workspace can 

lead to a cluttered mind. Take a few minutes to declutter and 

organize your workspace to improve your focus and productivity.

7. Prioritize tasks: Identify the most important tasks and work 

on them first. This will help you avoid feeling overwhelmed and 

ensure that the most critical tasks are completed.

8. Focus on one task at a time: Mult

# Use generate to get the more details

result = my_llm.generate(['How can I make my day successful?'])

# Print only the output text

print("Output Text:", result.generations[0][0].text.strip())

OUTPUT 2

Output Text: 1. Set goals: Start your day by setting realistic 

and achievable goals. This will help you stay focused and 

motivated throughout the day.

2. Wake up early: Waking up early gives you more time to 

accomplish your tasks and sets a positive tone for the day.

3. Exercise: Start your day with some form of physical 

activity. This will boost your energy levels and improve your 

overall mood.
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4. Eat a healthy breakfast: A nutritious breakfast will provide 

you with the energy and nutrients you need to stay productive 

throughout the day.

5. Prioritize tasks: Make a to-do list and prioritize your 

tasks based on their importance. This will help you stay 

organized and ensure that you complete the most important 

tasks first.

6. Take breaks: It's important to take breaks throughout the 

day to avoid burnout. Use your breaks to relax, stretch, or do 

something you enjoy.

7. Stay hydrated: Drinking enough water throughout the day will 

help you stay focused and energized.

8. Stay positive: A positive mindset can make a huge difference 

in your productivity and overall well-being. Focus on the good 

things and try to stay optimistic.

9. Limit distractions: Minimize distractions such as social 

media, emails, or phone calls during work hours.

8.4.2  Using Chat Models with LLMs

Let’s discuss its background theory and description aspects of LangChain 

with OpenAI chat models. Let’s first consider the following terms.

• ChatPromptTemplate is used for creating an 

end-to-end complete conversation prompt. 

ChatPromptTemplate combines various message types 

to make sure the conversation is structured properly 

for the LLM. For example, it can contain a system 

instruction like “You are a helpful assistant” and also 

have a user input like “How do I prepare Paneer Butter 

Masala, a popular Indian dish?”
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• HumanMessagePromptTemplate outlines the user’s 

input in a two-way conversation. For example, for a 

user query, “What is the commercial capital of the 

US?” this template captures the given query and 

then passes it on to the LLM like OpenAI Chatbot. 

HumanMessagePromptTemplate facilitates user 

interactions to be dynamic and easy to handle.

• SystemMessagePromptTemplate is responsible 

for setting the rules (commands) for the AI. For 

instance, the role or behavior of AI. Let’s construct 

this instruction to AI, “You are a popular math 

professor who makes even complex concepts as easy 

to understand.” Such instruction(s) prompt the LLM 

to answer in an explicit style. It also makes sure the AI 

remains on track (task) all through the chat.

These three templates combined together to structure conversations 

with LLMs. The following sections look into the usage of these templates.

 – SystemMessagePromptTemplate sets the AI’s role or 

behavior.

 – HumanMessagePromptTemplate captures the 

user’s input.

 – ChatPromptTemplate combines these messages to 

create a full conversation for the AI to process.

Now, it is time to look into various available (popular) OpenAI Models 

for our use. Each one is created with a specific purpose in mind. For 

instance, use `gpt-3.5-turbo` to create a chatbot or `davinci` for writing 

essays. The following are the more popular ones.
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 – gpt-4 is best for complex reasoning tasks.

 – gpt-3.5-turbo is efficient and cost-effective for most 

applications.

 – text-davinci-003 is great for creative writing or 

summarization.

 – text-curie-001 is faster and cheaper and ideal for 

simple tasks.

 Building a Friendly Chat Assistant with  
LangChain and GPT-3.5-Turbo

Listing 8-6 is demo code covering the concepts covered in this section. 

This program uses LangChain’s templates to structure a conversation with 

GPT-3.5-Turbo. The SystemMessagePromptTemplate sets the AI’s role as a 

friendly assistant, while the HumanMessagePromptTemplate dynamically 

captures user input. These are combined using a ChatPromptTemplate to 

create a full prompt. The AI processes this prompt and generates a clear 

and concise response based on the user’s query.

Listing 8-6. Building a Friendly Chat Assistant with LangChain and 

GPT-3.5-Turbo

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_

KEY.txt')

api_key = f.read()

from langchain.chat_models import ChatOpenAI

from langchain.prompts.chat import (

    ChatPromptTemplate,

    HumanMessagePromptTemplate,

    SystemMessagePromptTemplate,

)
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# Initialize the Chat Model

chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7, 

openai_api_key=api_key)

# Define the System Message Template

system_message = SystemMessagePromptTemplate.from_template(

     "You are a friendly assistant that answers questions 

clearly and concisely."

)

# Define the Human Message Template

human_message = HumanMessagePromptTemplate.from_

template("{user_input}")

# Combine into a Chat Prompt Template

chat_prompt = ChatPromptTemplate.from_messages([system_message, 

human_message])

# Example User Input

user_input = "What are some fun weekend activities for kids?"

# Format the Prompt

messages = chat_prompt.format_messages(user_input=user_input)

# Get the Model Response

response = chat_model(messages)

# Display the AI Response

print("AI Response:", response.content)

AI Response: Some fun weekend activities for kids include going 

to the park, visiting a zoo or aquarium, having a picnic, going 

on a nature hike, going to a children's museum, having a movie 

or game night at home, or doing a craft or science project 

together.
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Let’s now turn to a couple of new concepts.

• Document loaders are deployed to read and load data 

from files like PDFs, Word documents, or web pages. 

Document loaders reformat the content into a form 

that works with AI models. For example, we can upload 

a Microsoft Word document and use it for question 

answering applications.

• Document integration loaders integrate data from 

many documents to create a single document. This 

way, large sets of information can be easily handled in 

one place. For instance, Document Integration Loaders 

can combine multiple files from a folder to generate a 

single knowledge base for the AI.

• Document transformers process, clean, and maybe 

reformat the loaded content to make it work for the 

AI. For example, document transformers can be used to 

clean the raw input text, eliminate superfluous parts, or 

even summarize bigger documents. This way helps the 

AI models to work more proficiently with the data.

 Business Data Preparation for AI Applications

Listing 8-7 examines the demo code for the document and data 

preparation functions. This program reads data from a PDF and a text 

file. It combines the data into one set for easier handling. It processes and 

cleans the data by splitting it into smaller chunks. Finally, the cleaned 

data is ready for AI to use, such as answering questions. This program 

demonstrates how to prepare data for AI use.

• Document Loade: PDF and text files are read using 

`PyPDFLoader` and `TextLoader`.
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• Document Integration: All loaded files are combined 

into one list for easy management.

• Document transformers: Data is cleaned and split into 

manageable chunks for AI models.

Listing 8-7. Business Data Preparation for AI Applications

# Install it if not done already.

#!pip install pypdf

# Importing necessary libraries

from langchain.document_loaders import PyPDFLoader  # To load 

and read PDF files

from langchain.document_loaders import TextLoader  # To load 

and read text files

from langchain.text_splitter import CharacterTextSplitter  # To 

split text into smaller chunks

# Define a simple text-cleaning function

def clean_text(text):

    """Remove unnecessary characters and extra spaces."""

    import re

     text = re.sub(r"\s+", " ", text)  # Replace multiple spaces 

with a single space

     text = re.sub(r"[^a-zA-Z0-9.,!? ]", "", text)  # Remove 

special characters

    return text.strip()

# Step 1: Load documents

pdf_loader = PyPDFLoader("business_report.pdf")  # Replace with 

your business PDF file

pdf_documents = pdf_loader.load()  # Load and parse the 

PDF content
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text_loader = TextLoader("meeting_notes.txt")  # Replace with 

your business text file

text_documents = text_loader.load()  # Load and parse the text 

file content

# Step 2: Integrate documents

all_documents = pdf_documents + text_documents

# Step 3: Transform documents

splitter = CharacterTextSplitter(chunk_size=500, chunk_

overlap=50)

transformed_docs = []

for doc in all_documents:

    chunks = splitter.split_text(doc.page_content)  # Use 

'page_content' instead of 'content'

    cleaned_chunks = [clean_text(chunk) for chunk in chunks]   

# Clean each chunk

    transformed_docs.extend(cleaned_chunks)

# Step 4: Use the transformed data for AI (Example: Question 

Answering)

print("Transformed and cleaned document chunks ready for AI 

processing:")

for doc in transformed_docs[:5]:  # Print a few examples

    print(doc)

OUTPUT:

Transformed and cleaned document chunks ready for AI 

processing:

Adobe Acrobat PDF Files Adobe Portable Document Format PDF 

is a universal file format that preserves all of the fonts, 

formatting, colours and graphics of any source document, 

regardless of the application and platform used to create it. 
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............  Compact PDF files are smaller than their source 

files and download a page at a time for fast display on the 

Web. Step 2 Integrate documents Combine the loaded PDF and text 

documents into a single list.

Let’s go over a few more useful concepts and write a demo program 

demonstrating their use as usual.

• Text embeddings convert words or sentences into 

numeric vectors. We do so as machines (algorithms) 

need data in number format. For instance, “car” and 

“vehicle” may have similar embeddings or vectors 

since they are related. AI models consume embeddings 

to compare and analyze text.

• A vector store saves and categorizes embeddings so 

that AI models can search for related meanings. For 

example, a vector store saves the embedding of “car” to 

find similar terms like “truck” or “automobile.” Vector 

stores make searching text more efficient.

• A vector store retriever discovers similar (matching) 

vectors from the vector store. A vector store retriever 

helps to search for answers (or related text) swiftly. For 

instance, if you search for the word “train,” it recovers 

embeddings for “railway” or “locomotive.” This process 

speeds up searches in AI applications. Next, we look at 

a demo program using these concepts.
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 Text Embedding Search with Vector Store 
and Retriever

The program shown in Listing 8-8 creates text embeddings to represent 

words as numbers. It stores the embeddings in a vector store for easy 

access. Using a vector store retriever, it finds related words based on their 

meanings. This demonstrates how AI can understand and compare text 

efficiently.

• Text embeddings: Words like “car” and “bicycle” are 

turned into numbers using a model.

• Vector store: These numbers are saved for future 

searches.

• Vector store retriever: Finds the closest matches to a 

query like “automobile.”

• Purpose: Shows how AI connects related words using 

embeddings and vector search.

Listing 8-8. Text Embedding Search with Vector Store and Retriever

# Install the library needed to turn text into numbers 

(embeddings) for the program.

# !pip install sentence-transformers

# FAISS (Facebook AI Similarity Search) is a library for 

efficient similarity search and clustering of dense vectors.

# Install the FAISS library optimized for CPU usage

# !pip install faiss-cpu

# Suppress a specific warning when using Hugging Face models in 

environments that don’t support symlinks (like on Windows).

import os

os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"

# Import necessary libraries
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from sentence_transformers import SentenceTransformer   

# For creating text embeddings

from langchain.vectorstores import FAISS  # To create and 

manage a vector store

from langchain.schema import Document  # For creating 

Document objects

from langchain.embeddings import HuggingFaceEmbeddings   

# Use HuggingFace for embeddings

# Step 1: Create a text embedding model using 

HuggingFaceEmbeddings

embedding_model = HuggingFaceEmbeddings(model_name="sentence- 

transformers/all-MiniLM-L6-v2")

# Sample text data

texts = ["car", "vehicle", "train", "bicycle", "airplane"]   

# Words to embed and compare

# Step 2: Convert text to Document objects

documents = [Document(page_content=text) for text in texts]   

# Wrap texts in Document objects

# Step 3: Create a vector store using HuggingFaceEmbeddings

vector_store = FAISS.from_documents(documents, embedding_

model)  # Create vector store with embeddings

# Step 4: Use a vector store retriever

query = "automobile"  # Input to find related terms

query_embedding = embedding_model.embed_documents([query])   

# Create embedding for the query

# Step 5: Use the retriever to get relevant documents using 

`invoke` (not deprecated)

Chapter 8  transformers, Generative ai, and LanGChain



382

retriever = vector_store.as_retriever()  # Initialize retriever 

from the vector store

results = retriever.invoke(query)  # Use invoke to find matches 

(replaces get_relevant_documents)

# Step 6: Display results

print(f"Query: {query}")

print("Top matches:")

for result in results:

    print(result.page_content)  # Print the matching 

document content

OUTPUT:

Query: automobile

Top matches:

car

vehicle

bicycle

airplane

Multi-query retrievers advance search accuracy by creating multiple 

query variations of the input, while context compression summarizes 

input to handle long contexts efficiently. The following are brief 

descriptions.

• Multi-query retriever helps improve search precision 

by creating diverse versions of a query. For instance, 

if the user input query is “Best books,” Multi-Query 

Retriever also produces associated versions like 

“Top books to read” or “Popular books.” This process 

aids in getting more complete search results. It’s like 

requesting the same question in multiple ways to get 

the best answer from LLMs.
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• Context compression condenses long input texts so 

that the focus remains on the most important parts. For 

example, for a ten-page input document, the context 

compression component can compress it into a few key 

paragraphs. This comes in handy, especially when a 

full document can’t be because of size limitations. It’s 

analogous to writing a summary of a lengthy story to 

save time.

Next, let’s analyze a demo program showing the usage of multi-query 

retriever and context compression.

 Smart Query Helper with LangChain and OpenAI

The program shown in Listing 8-9 takes a main question and splits it into 

smaller questions to find better answers using a multi-query retriever. It 

also combines and compresses the results into a short and clear summary. 

It uses LangChain and OpenAI for building the helper. The goal is to make 

searching smarter and faster!

• Save some example text in a file named sample_text.txt.

• Run this program to ask a question about the text.

• The program retrieves and summarizes relevant 

information along with sources!

Listing 8-9. Smart Query Helper with LangChain and OpenAI

# Read the open ai api key from your text filr

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_

KEY.txt')

api_key = f.read()

from langchain.chains import RetrievalQAWithSourcesChain

from langchain.chat_models import ChatOpenAI
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from langchain.vectorstores import FAISS

from langchain.embeddings.openai import OpenAIEmbeddings   

# Import OpenAI's embeddings

from langchain.text_splitter import 

RecursiveCharacterTextSplitter

from langchain.document_loaders import TextLoader

# Step 1: Load some example text data

loader = TextLoader('sample_text.txt')

documents = loader.load()

# Step 2: Split the text into manageable chunks

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, 

chunk_overlap=50)

docs = text_splitter.split_documents(documents)

# Step 3: Use FAISS as the retriever with OpenAI embeddings

embeddings = OpenAIEmbeddings(openai_api_key=api_key)  # Pass 

the API key here

retriever = FAISS.from_documents(docs, embeddings).as_

retriever()

# Step 4: Set up the ChatOpenAI model with the API key

llm = ChatOpenAI(temperature=0, openai_api_key=api_key)  # Pass 

the API key here

# Step 5: Combine the retriever and the model

qa_chain = RetrievalQAWithSourcesChain.from_chain_type(

    llm=llm, retriever=retriever, return_source_documents=True

)

# Step 6: Ask a complex question and get a smart answer

# Pass the query as a dictionary with the correct key: 

'question'
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query = {"question": "How does AI help teachers save time in 

their daily tasks?"}

result = qa_chain(query)  # Use the correct input format

# Display the compressed answer and sources

print("Summary Answer:", result['answer'])

print("\nSources:", result['sources'])

Summary Answer: AI helps teachers save time in their daily 

tasks by automating repetitive tasks such as grading 

assignments and creating quizzes, allowing educators to focus 

more on teaching. AI chatbots can also assist students by 

providing instant feedback and answering questions, making 

learning more interactive and engaging.

Sources: sample_text.txt

8.4.3  Working with Prompt Templates and  
Few-Shot Templates

Prompt templates and few-shot templates are indispensable tools that 

guide AI models to produce precise responses. Both these templates offer a 

structured method to frame inputs. Prompt templates and few- 

shot templates improve the model’s comprehension of your exact 

requirements. The following describes the use of these templates.

• Prompt templates are pre-designed formats to ask 

questions or give instructions to your AI model. They 

ensure the given input is clear and organized; for 

example, “Interpret the text to German: {text}”. In this 

example, {text} is simply a placeholder where you can 

add any input. This arrangement supports your AI 

model answer accurately.
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• Few-shot templates give examples to the AI before 

asking a question. This shows the AI how to respond. 

For instance, Question: What is generative AI? Answer: 

Generative AI is a smart computer system that can 

generate text and images. Now your turn: Question: 

{question}”. In this example, {question} is a placeholder 

where you can input your own question. The AI uses 

this type of construct to give better answers.

Next, let’s look at a demo program to show the usage of prompt 

templates and few-shot templates. AI model’s responses with and without 

templates are also compared with comments.

 Guiding AI Responses with and Without Templates

The following is a Python demo using LangChain to show the difference 

between using no templates and using prompt templates.

# Read the open ai api key from your text filr

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_KEY.txt')

api_key = f.read()

 Without Templates

# Import the ChatOpenAI class for interacting with OpenAI's 

language models

from langchain.chat_models import ChatOpenAI

# Initialize the OpenAI model with default settings

llm = ChatOpenAI(temperature=0, openai_api_key=api_key)

# Ask the AI a simple question without using a template

response = llm.predict("Explain what Generative AI is.")

print(response)  # Print the AI's response
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OUTPUT:

Generative AI refers to a type of artificial intelligence that is 

capable of creating new content, such as images, text, or music, 

that is original and not based on existing data. This type of 

AI uses algorithms to generate new content by learning patterns 

and structures from a dataset and then creating new content 

based on those patterns. Generative AI can be used in a variety 

of applications, such as creating realistic images, generating 

text for chatbots, or composing music. It has the potential to 

revolutionize creative industries by automating the process of 

content creation and enabling new forms of artistic expression.

• Response without template: The answer is longer, 

detailed, and covers multiple aspects.

• Issue: The AI is freeform, which may result in verbose 

or inconsistent responses. The tone and content might 

vary depending on the question.

 With Prompt Template

# Import necessary components

from langchain.prompts import PromptTemplate  # For creating 

structured prompts

from langchain.chat_models import ChatOpenAI  # For interacting 

with OpenAI's language models

# Define a prompt template with placeholders

template = PromptTemplate(

     input_variables=["topic"],  # Define the 

placeholder 'topic'

     template="Explain what {topic} is in simple terms.",   

# Structure the input

)
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# Initialize the OpenAI model with default settings

llm = ChatOpenAI(temperature=0, openai_api_key=api_key)

# Fill in the placeholder with a specific topic

prompt = template.format(topic="Generative AI")  # Replace 

'topic' with "Generative AI"

# Get the AI's response using the formatted prompt

response = llm.predict(prompt)

print(response)  # Print the AI's response

OUTPUT:

Generative AI is a type of artificial intelligence that can 

create new content, such as images, text, or music, based on 

patterns it has learned from existing data. It uses algorithms 

to generate new, original content that is similar to what it 

has been trained on. This technology can be used in a variety 

of applications, such as creating realistic images, generating 

personalized recommendations, or even composing music.

 With Few-Shot Template

Listing 8-10 depicts the program for working with a few-shot template.

Listing 8-10. Code demo for working with a ew-shot template

# Import necessary components

from langchain.prompts import FewShotPromptTemplate, 

PromptTemplate  # For few-shot and regular prompts

from langchain.chat_models import ChatOpenAI  # For interacting 

with OpenAI's language models

# Define examples to show the AI how to respond

examples = [

     {"question": "What is Machine Learning?", "answer": 

"Machine Learning is a system where computers learn from 

data."},
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     {"question": "What is AI?", "answer": "AI is a field of 

computer science that makes machines smart."},

]

# Create a PromptTemplate for each example

example_prompt = PromptTemplate(

     input_variables=["question", "answer"],  # Define the 

placeholders

     template="Question: {question}\nAnswer: {answer}",   

# Format for each example

)

# Define the prefix and suffix for the few-shot template

prefix = "You are an expert in technology. Answer the following 

questions in simple terms:"

suffix = "Now your turn: Question: {question}"

# Create a FewShotPromptTemplate

few_shot_template = FewShotPromptTemplate(

    examples=examples,  # Provide the examples

     example_prompt=example_prompt,  # Use the PromptTemplate 

for examples

    prefix=prefix,  # Add the prefix text

    suffix=suffix,  # Add the suffix text

     input_variables=["question"],  # Define the placeholder for 

the final question

)

# Initialize the OpenAI model

llm = ChatOpenAI(temperature=0, openai_api_key=api_key)   

# Provide your API key
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# Fill in the placeholder with your question

prompt = few_shot_template.format(question="What is Generative 

AI?")  # Replace 'question' with your query

# Get the AI's response using the few-shot template

response = llm.predict(prompt)

print(response)  # Print the AI's response

OUTPUT:

Answer: Generative AI is a type of artificial intelligence that 

can create new content, such as images, music, or text, based 

on patterns it has learned from existing data.

• Response with the template: The answer is concise 

and aligns with the examples provided.

• Benefit: The examples serve as a guide, instructing the 

AI on how to respond in a specific style, resulting in 

output that is focused, consistent, and simpler.

8.4.4  Parsing and Serialization

When LangChain and LLMs are in the background, we use parsing to 

structure and process user input queries. This way, AI models can better 

understand user queries. In input parsing, we break the user queries into 

more manageable pieces, which make it easier for LLMs from OpenAI 

or others to process. Input parsing may include tasks such as converting 

the input text to lowercase, splitting it into tokens (words), or removing 

unwanted text or other undesired information.

There exists output parsing that is employed to extract relevant and 

usable information from the LLM response. Output parsing ensures 

the easy understanding and consumption of LLM responses down the 
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line. One useful example of output parsing can be summarization and 

extraction of only the key parts of the LLM’s response. Next, let’s examine 

demo programs to illustrate these concepts.

 Input and Output Parsing in LangChain and OpenAI

The program shown in Listing 8-11 demonstrates how to use Pydantic, 

Datetime, CommaSeparatedList, and OutputFixing parsers in LangChain. 

Each section validates or corrects input data and outputs the results clearly 

and understandably.

The program parses with and without the LLM.

Listing 8-11. Input and Output Parsing in LangChain and OpenAI

# Read the open ai API key from your text file

f = open('C:\\Users\\Shailendra  Kadre\\Desktop\\OPEN_AI_

KEY.txt')

api_key = f.read()

# Import necessary parsers from LangChain

from langchain.output_parsers import PydanticOutputParser   

# For parsing data into Pydantic models

from langchain.output_parsers import DatetimeOutputParser   

# For parsing datetime strings

from langchain.output_parsers import 

CommaSeparatedListOutputParser  # For parsing comma- 

separated lists

from langchain.output_parsers import OutputFixingParser   

# For fixing and handling parser errors

from pydantic import BaseModel  # Import Pydantic to define 

structured data models

# Sample input data

input_data = "2025-01-22 12:30:00, Shailendra, Engineering, 

Deep Learning"  # Example input string
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# Define a Pydantic model for structured data

class DataModel(BaseModel):

    date_time: str

    name: str

    field: str

    subject: str

# First, use DatetimeOutputParser to parse the date and time 

from input data

from langchain.output_parsers import DatetimeOutputParser

from datetime import datetime

# Example input data

input_data = "2025-01-22 12:30:00, Shailendra, Engineering, 

Deep Learning"

# Extract the datetime string (first part before the comma)

datetime_str = input_data.split(',')[0].strip()

# Convert the datetime string to ISO 8601 format (with 

milliseconds and 'Z' suffix)

try:

     iso_datetime_str = datetime.strptime(datetime_str, "%Y-%m-

%d %H:%M:%S").isoformat(timespec='milliseconds') + "Z"

     print("ISO 8601 formatted datetime:", iso_datetime_str)   

# Output the formatted datetime string

except ValueError as e:

    print("Datetime Parsing Error:", e)

    iso_datetime_str = None  # Handle the error gracefully

# Initialize the DatetimeOutputParser if datetime_str is valid

if iso_datetime_str:

     datetime_parser = DatetimeOutputParser()  # Initialize the 

datetime parser
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    try:

         # Now parse with the new parser if iso_datetime_str 

is valid

         datetime_parsed = datetime_parser.parse(iso_datetime_

str)  # Pass the correctly formatted datetime string

         print("Parsed Date and Time:", datetime_parsed)   

# Output the parsed datetime

    except Exception as e:

        print("Parsing Error:", e)

else:

    print("Invalid datetime format.")

ISO 8601 formatted datetime: 2025-01-22T12:30:00.000Z

Parsed Date and Time: 2025-01-22 12:30:00

# Next, use CommaSeparatedListOutputParser to parse the 

remaining comma-separated values

comma_str = ', '.join(input_data.split(',')[1:])  # Extract the 

part after the datetime and join into a string

comma_parser = CommaSeparatedListOutputParser()  # Initialize 

the parser for comma-separated lists

comma_parsed = comma_parser.parse(comma_str)  # Parse the 

comma-separated values

print("Parsed Comma-Separated List:", comma_parsed)  # Output 

the parsed list

Parsed Comma-Separated List: ['Shailendra', 'Engineering', 

'Deep Learning']

# Let's also demonstrate OutputFixingParser for fixing and 

parsing faulty inputs

from langchain.llms import OpenAI

from langchain.llms import OpenAI

from langchain.output_parsers import DatetimeOutputParser, 

OutputFixingParser

from datetime import datetime

Chapter 8  transformers, Generative ai, and LanGChain



394

# Replace with your actual OpenAI API key

api_key = api_key  # <-- Ensure this is your actual API key

# Initialize the LLM with the correct API key

llm = OpenAI(temperature=0.7, openai_api_key=api_key)

# Example input data with datetime in the correct format

datetime_str = "2025-01-22T12:30:00.000Z"  # Ensure this 

matches the required format

# Initialize the datetime parser

datetime_parser = DatetimeOutputParser()

# Use the OutputFixingParser with the LLM

output_fixer = OutputFixingParser.from_llm(parser=datetime_

parser, llm=llm)

# Fix and parse the datetime string

try:

     fixed_output = output_fixer.parse(datetime_str)  # Parsing 

the datetime string

     print("Fixed Output:", fixed_output)  # Output the fixed 

parsed result

except Exception as e:

    print("Error:", e)

Fixed Output: 2025-01-22 12:30:00

# Demo of pydantic parser

# Install the library if not done already

#!pip install pydantic

from langchain.output_parsers import PydanticOutputParser

class Planet(BaseModel):

    name: str = Field(description="Name of a planet")

     discoveries: list = Field(description="Python list of three 

facts about it")
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query = 'Name a well known planet and a list of three facts 

about it'

parser = PydanticOutputParser(pydantic_object=Planet)

print(parser.get_format_instructions())

The output should be formatted as a JSON instance that conforms 

to the JSON schema below.

As an example, for the schema {"properties": {"foo": {"title": 

"Foo", "description": "a list of strings", "type": "array", 

"items": {"type": "string"}}}, "required": ["foo"]}

the object {"foo": ["bar", "baz"]} is a well-formatted instance 

of the schema. The object {"properties": {"foo": ["bar", 

"baz"]}} is not well-formatted.

Here is the output schema:

```

{"properties": {"name": {"description": "Name of a planet", 

"title": "Name", "type": "string"}, "discoveries": 

{"description": "Python list of three facts about it", "items": 

{}, "title": "Discoveries", "type": "array"}}, "required": 

["name", "discoveries"]}

```

from langchain.prompts import PromptTemplate

from langchain.llms import OpenAI  # Ensure that OpenAI is 

correctly imported

# Initialize your OpenAI model with the correct API key

#api_key = "your_openai_api_key_here"  # Replace with your 

actual API key

llm = OpenAI(temperature=0.7, openai_api_key=api_key)
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# Assuming you're working with simple text output

# Create a prompt template with placeholders for 'query' and 

'format_instructions'

prompt = PromptTemplate(

     template="Answer the user query.\n{format_instructions}\

n{query}\n",

    input_variables=["query"],

     partial_variables={"format_instructions": parser.get_

format_instructions()},  # Adjust if needed

)

# Format the prompt with the user's query

_input = prompt.format_prompt(query='Name a well known planet 

and a list of three facts about it')

# Send the formatted prompt to the model and receive the output

output = llm(_input.to_string())

# Output is plain text, so you can directly print or process it

print("Model Output:", output)

Model Output:

{"name": "Earth", "discoveries": ["Earth is the third planet 

from the Sun", "It is the only known planet to have liquid 

water on its surface", "Earth has a single natural satellite, 

the Moon"]}

Serialization in the context of AI means we can save (in a format 

suitable for storage) the AI’s output, transmit it, and retrieve it later 

when required. During this process, we can even convert data to JSON 

or other supported structures. Serialization techniques advance the way 

AI interacts with users and handles data. The serialization process thus 

makes the entire process more efficient, reliable, and effective.
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 Input and Output with Serialization in LangChain 
and OpenAI

Listing 8-12 shows how to save and reload a setup for a language model 

(an AI that understands and generates text). It uses a tool called LangChain 

and OpenAI’s API to do the following.

 1. Create a task where the AI translates English text 

into French.

 2. Save the setup (like a recipe) into a file so it can be 

reused later.

 3. Load the saved setup back from the file.

 4. Test the loaded setup by asking the AI to translate a 

sentence.

It’s like writing down a recipe, storing it, and then using it again later to 

cook the same dish!

Listing 8-12. Input and Output with Serialization in LangChain 

and OpenAI

# Read the open ai API key from your text file

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_

KEY.txt')

api_key = f.read()

import json

from langchain.prompts import PromptTemplate

from langchain_openai import ChatOpenAI

from langchain.schema.runnable import RunnableSequence

# Step 1: Provide your OpenAI API key

#api_key = "your_openai_api_key_here"  # Replace with your 

actual OpenAI API key
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# Step 2: Initialize the ChatOpenAI model

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, openai_

api_key=api_key)

# Step 3: Create a prompt template

prompt = PromptTemplate(

    input_variables=["text"],

    template="Translate this to French: {text}"

)

# Step 4: Create a RunnableSequence (replaces LLMChain)

chain = prompt | llm

# Step 5: Serialize the RunnableSequence manually

serialization_path = "llm_chain.json"

# Save the necessary configuration parameters for 

reconstruction

chain_dict = {

    "llm": {

        "model": "gpt-3.5-turbo",

        "temperature": 0,

        "openai_api_key": api_key

    },

    "prompt": {

        "template": prompt.template,

        "input_variables": prompt.input_variables

    }

}

with open(serialization_path, "w") as f:

    json.dump(chain_dict, f)

print("Serialized RunnableSequence saved to llm_chain.json.")
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# Step 6: Load the serialized data

with open(serialization_path, "r") as f:

    chain_data = json.load(f)

# Step 7: Reconstruct the RunnableSequence manually

# Recreate the ChatOpenAI instance

loaded_llm = ChatOpenAI(

    model=chain_data["llm"]["model"],

    temperature=chain_data["llm"]["temperature"],

    openai_api_key=chain_data["llm"]["openai_api_key"]

)

# Recreate the PromptTemplate instance

loaded_prompt = PromptTemplate(

    input_variables=chain_data["prompt"]["input_variables"],

    template=chain_data["prompt"]["template"]

)

# Recreate the RunnableSequence

loaded_chain = loaded_prompt | loaded_llm

print("Loaded RunnableSequence successfully!")

# Step 8: Use the loaded chain to process input

input_text = {"text": "Hello, how are you?"}

output = loaded_chain.invoke(input_text)

# Extract only the main content from the output

if isinstance(output, dict) and "content" in output:

    output_text = output["content"]

else:

     output_text = output.content if hasattr(output, "content") 

else str(output)
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# Step 9: Print concise output

print(f"Output: {output_text}")

Serialized RunnableSequence saved to llm_chain.json.

Loaded RunnableSequence successfully!

Output: Bonjour, comment vas-tu ?

8.4.5  Customizing Model Inputs 
and Handling Outputs

Customizing inputs and handling outputs goes much beyond simple 

parsing. While the focus of the LLM parsing process is to break inputs and 

outputs (to and from LLMs) into structured formats, customization focuses 

on adapting inputs and outputs to meet precise goals. Customization 

of LLM inputs involves shaping prompts for clarity, relevance, and 

context. This involves adding comprehensive instructions and utilizing 

examples to guide the model, or it can involve formatting text for improved 

understanding. For example, while processing a user query to LLM for 

summarizing a piece of text, the customization process can include key 

points, or it can specify word limits in the prompt itself to ensure more 

accurate results. Customization goes much beyond parsing, which is 

discussed in the previous section. The precise goal of customizing inputs 

and outputs for LLMs is to craft them to guide the model efficiently toward 

the anticipated result with the desired information in the desired format. 

For instance, LLM-driven chatbots may need trimming of output to fit 

the designed character limits. The customization process, in this case, 

may even rephrase the output to maintain the desired consistency in 

tone. Similarly, applications like report generators often require precise 

formatting of outputs according to structured templates. The input/output 

customization process makes sure that the LLM responses are usable and 

aligned with the planned purpose.
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Customization and handling often require iterative strategies, where 

inputs are tested and refined based on the output quality. Feedback 

loops are created to find gaps and improve performance. Thoughtful 

customization of inputs and outputs for LLMs can help maximize 

efficiency for tasks such as text summarization, social media sentiment 

analysis, and customer service. Customization is a comprehensive 

approach that brings accuracy, relevance, and efficiency in leveraging 

LLMs for business and other real-life applications.

 Input and Output Customization with LangChain 
and OpenAI

The following describes how the Listing 8-13 program works.

 1. Imports required libraries. Loads necessary 

libraries from LangChain to interact with 

OpenAI’s model.

 2. Defines a PromptTemplate. Sets up a prompt 

template to instruct the model on how to 

summarize a given topic in a specified word limit.

 3. Sets up API key. Prepares the API key for 

OpenAI access.

 4. Creates a LLM (language model) instance. 

Initializes OpenAI’s GPT-3.5-Turbo model with 

specific settings like temperature and max tokens.

 5. Inputs data. Defines the topic and word_limit for 

the summary.

 6. Formats the prompt. Uses the PromptTemplate to 

insert the topic and word_limit into the prompt.
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 7. Generates a response. Sends the formatted prompt 

to the GPT-3.5 model and receives a response.

 8. Refines the output. Processes the model’s response 

by breaking it down into key points for improved 

readability.

 9. Displays the output. Prints both the formatted 

input and the refined output in bullet points.

Listing 8-13. Input and Output Customization with LangChain 

and OpenAI

# Read the open ai API key from your text file

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_KEY.txt')

api_key = f.read()

# Import required libraries

from langchain_openai import ChatOpenAI  # Updated import for 

the OpenAI model

from langchain.prompts import PromptTemplate

# Step 1: Define the input customization using a detailed 

prompt template

# This prompt provides clear instructions and a specific 

context for the LLM.

prompt_template = PromptTemplate(

    input_variables=["topic", "word_limit"],

    template="""

You are an expert content writer. Write a summary about 

"{topic}" in {word_limit} words.

Focus on the key points, avoid unnecessary details, and ensure 

readability for a general audience.

"""

)
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# Step 2: Provide your OpenAI API key

# Replace YOUR_API_KEY_HERE with your actual OpenAI API key.

api_key = api_key

# Step 3: Create an instance of OpenAI's GPT-3.5-Turbo model 

using LangChain

llm = ChatOpenAI(

    model="gpt-3.5-turbo",  # Specify the turbo model

    temperature=0.7,  # Controls creativity

    max_tokens=300,  # Maximum response length

    openai_api_key=api_key  # Pass your API key

)

# Step 4: Provide input values for the topic and word limit

input_data = {

     "topic": "The impact of climate change on global 

agriculture",

    "word_limit": 50

# Step 5: Format the prompt using the input values

formatted_input = prompt_template.format(**input_data)   

# Format the prompt with input_data

# Step 6: Execute the model using the formatted input

response = llm(formatted_input)

# Step 7: Handle and customize the output

# Access the content of the AIMessage object using .content

raw_output = response.content  # Correct way to access the 

response content

# Post-process the output to extract and format key points.

def refine_output(raw_output):

    """
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     This function extracts key points and formats the output 

for better readability.

    """

     key_points = [point.strip() for point in raw_output.

split(".") if point.strip()]

    return "\n".join(f"- {point}." for point in key_points)

# Refine the raw output

refined_output = refine_output(raw_output)

# Step 8: Display the input and final output

print("Customized Input:")

print(formatted_input)  # Print the final customized input

print("\nRefined Output:")

print(refined_output)  # Display the refined and formatted 

response

PROGRAM OUTPUT:

Customized Input:

You are an expert content writer. Write a summary about "The 

impact of climate change on global agriculture" in 50 words.

Focus on the key points, avoid unnecessary details, and ensure 

readability for a general audience.

Refined Output:

- Climate change has profound effects on global agriculture, 

leading to shifts in growing seasons, increased extreme weather 

events, and threats to crop yields.

- Rising temperatures, changing precipitation patterns, and 

more frequent pests and diseases pose significant challenges to 

food security and agricultural sustainability worldwide.
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8.4.6  Switching Between Different LLMs

These days, many NLP applications require switching amid multiple 

large language models (LLMs). LLMs are continuously evolving and 

improving with every passing day—significantly enhancing their ability to 

handle diverse tasks. There are a variety of LLMs available from multiple 

companies. Each model comes with its unique strengths and also equally 

unique limitations. Choosing the right model for the right task is crucial. 

In this context, the ability to seamlessly switch between LLMs enhances 

flexibility, efficiency, and overall performance in NLP applications.

Basic architecture and training datasets are the primary considerations 

when choosing between LLMs. These factors have a profound impact 

on any LLM’s ability to understand language, model response quality, 

and computational resource requirements. GPT-based models outrival 

conversational AI, while BERT is more appropriate for document 

classification tasks. If developers can dynamically switch between these 

models, they can optimal NLP applications for a variety of tasks. This way, 

the developer can appropriately leverage the strengths of each model. 

These hybrid tactics, which combine multiple LLMs, can be an added 

advance for the accuracy and reliability of complex workflows.

Despite several advantages, switching between LLMs presents multiple 

technical challenges,, specifically those concerning model compatibility 

and resource management. Developers need to establish an effective 

integration strategy that can handle variations in input-output formats, 

tokenization techniques, and LLM-specific parameters. As the NLP 

landscape continues to improve over time, learning the art of switching 

between multiple LLMs will become increasingly indispensable for 

realizing the full potential of AI-powered language skills.

Currently, LLM switching technologies are in their early stages of 

development. Still, seamless transitions between LLMs and optimum 

resource management across multiple models currently remain the areas 

for improvement. Under these circumstances, next, we provide a basic 

Chapter 8  transformers, Generative ai, and LanGChain



406

code demo that demonstrates integration and switching between different 

LLMs via APIs. Advanced demos that involve seamless model switching 

and resource optimization usually require custom-built architecture and 

additional tools.

 Switching Between GPT-4 and GPT-3.5 via OpenAI API

The program shown in Listing 8-14 demonstrates how to integrate and 

switch between two different LLMs—OpenAI’s GPT and Hugging Face’s 

BERT—using their respective APIs. It allows users to select a model for a 

specific task, process the input, and receive the corresponding output.

• This program allows users to choose between OpenAI’s 

GPT for text generation and Hugging Face’s BERT for 

sentiment analysis, enabling them to process input 

based on their selected model.

• Accepts user input based on the selected task and 

processes it using the chosen model.

• Outputs the generated text (from GPT) or sentiment 

analysis result (from BERT).

Note this demo is done in openai==0.28. so, to run the code, 

you need to run

!pip install openai==0.28

You can create a separate python environment and run it there.
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Listing 8-14. Switching Between GPT-4 and GPT-3.5 via 

OpenAI API

# !pip install openai==0.28

# Read the open ai API key from your text file

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_

KEY.txt')

api_key = f.read()

import openai

# Set your API key

openai.api_key = api_key

# Function to generate a response with model switching

def generate_response(model="gpt-3.5-turbo"):

    try:

        # Use the selected model to generate a response

        response = openai.ChatCompletion.create(

            model=model,  # Model selection here

             messages=[{"role": "user", "content": "Hello, 

world!"}]

        )

        # Extract and print the response

         print(f"Response from {model}: {response['choices'][0]

['message']['content']}")

    except Exception as e:

        print(f"An error occurred: {e}")

# Switch between different models

models = ["gpt-3.5-turbo", "gpt-4"]
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for model in models:

    print(f"\nSwitching to model: {model}")

    generate_response(model)

Switching to model: gpt-3.5-turbo

Response from gpt-3.5-turbo: Hello there! How can I assist 

you today?

Switching to model: gpt-4

Response from gpt-4: Hello! How can I assist you today?

8.5 Chapter Recap

This chapter examined the transformative world of contemporary NLP, 

which originated with the surge of transformers. The chapter began with 

self- and cross-attention mechanisms and the evolution of NLP from 

traditional methods to revolutionary models like BERT. We discussed 

DistilBERT and then extended the journey to multimodal NLP. Then, we 

showcased how OpenAI’s CLIP seamlessly integrates text, images, and 

audio, which allows NLP tasks like text-to-image search with amazing 

accuracy.

The chapter then delves into the evolution of text generation, from 

RNNs to GPT, revealing the intelligent processes behind GenAI models. 

All of it highlights the adaptability of GPT in its real-life applications. Later, 

we examined the emergent trends in AI-driven creativity. Building on 

this groundwork, we conducted multiple code demos using LangChain 

and OpenAI APIs, which are revolutionizing the technology world. Using 

these powerful tools, we demonstrated dynamic chat assistants and 

advanced query handling. The chapter later worked with examples of 

seamless interfacing with LLMs and built innovative applications in text 

embeddings, vector-based search, and context-aware responses.
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Toward the end of this chapter, learners are also steered through 

prompt crafting, serialization techniques, and customization of inputs and 

outputs (to and from LLMs) for custom-made applications. A  step- 

by- step walkthrough of switching between GPT-4 and GPT-3.5 illustrates 

the flexibility of LLMs. This chapter opens the door to the future of NLP, 

combining theoretical insights with real-world applications for aspiring AI 

practitioners.
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CHAPTER 9

Advancing 
with LangChain 
and OpenAI
The evolution of AI is significantly adding to the ability of business 

applications to handle complex workflows, retrieve relevant data 

efficiently, and maintain context across interactions. LangChain’s cutting-

edge framework delivers critical tools for the integration of external data 

sources, constructing multi-step AI workflows, and deploying scalable 

AI-powered solutions. This chapter explores how LangChain empowers 

seamless data connections, structured processing through chains, effective 

memory management, interactive agents, and scalable deployment 

strategies.

The first section looks into data connection. It specifies how 

LangChain relates to both structured and unstructured data through the 

use of document loaders, transformers, vector databases like ChromaDB, 

and multimodal sources. Next, we attend to chains and describe how to 

design and develop simple and multi-step AI workflows, handle function 

calls, and optimize error handling. Memory management in LangChain 

is critical for AI-powered applications, and this chapter explores several 

memory types, tracking interactions, and improving conversational 

context. Later, we discuss how AI agents can dynamically select tools, 
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automate tasks, and adapt to complex domains. Toward the end of this 

chapter, we examine various aspects of deployment and scalability 

for LangChain applications. This section offers insights into deploying 

LangChain applications in production environments while ensuring 

system performance and long-term system maintainability.

After completing this chapter, developers should be able to build 

AI-powered applications that are intelligent, efficient, context-aware, and 

adaptable to diverse business and other use cases. This chapter focuses 

chiefly on practical code examples, prevalent industry best practices, and 

optimization techniques that can streamline development and support the 

development and deployment of increasingly real-world AI executions.

9.1  Data Connection with Application-
Specific Data Sources

In natural language processing (NLP) applications or any application for 

that matter, effective data connection is critical for retrieving, processing, 

and using text or other data types from multiple sources. This section 

explores the vital components of integrating AP-powered applications 

into specific data sources to ensure seamless document loading, 

transformation, and embedding for advanced analytics. Let’s start with 

document loaders and integration.

9.1.1  Document Loading, Transformation, 
and Integration

LangChain document loaders process and extract text (and other 

information) from a variety of input file formats like CSV, HTML, PDFs, 

Word docs, and web pages. Using document loaders, we can easily import 

data into NLP systems or other AI applications. Every loader in LangChain 
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is equipped to handle a specific document type. This ensures efficient 

 extraction and pre-processing of text. For instance, PyMuPDFLoader is 

specially designed to work with PDF files, while UnstructuredLoader can 

work with a variety of formats.

These LangChain loaders are used for a variety of NLP tasks, including 

conversational chatbots, text summarization tools, and search engines. 

They are designed for converting unstructured text data into a structured 

format that can be understood and analyzed by NLP models. A couple of 

loaders also have support for chunking. Document loaders in LangChain 

significantly save time and effort in NLP developments by simplifying data 

handling.

Next, we demonstrate three basic document loaders.

 LangChain File Loaders for PDF, HTML, and CSV

This code in Listing 9-1 loads and extracts content from PDF, HTML, and 

CSV files using specific loaders for each file type. It prints the first 500 

characters of the content from each document to the console for preview. 

The process is repeated for all file types: PDF, HTML, and CSV.

Listing 9-1. LangChain File Loaders for PDF, HTML, and CSV

# Install these packages if not done already

#!pip install pymupdf

#!pip install Unstructured

from langchain.document_loaders import PyMuPDFLoader  # Import 

PDF loader

from langchain.document_loaders import 

UnstructuredHTMLLoader  # Import HTML loader

from langchain.document_loaders import CSVLoader  # Import 

CSV loader
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# Paths for sample csv, pdf, and html files

csv_path = "sample_csv.csv"

pdf_path = "sample_pdf.pdf"

html_path = "sample_html.pdf"

def load_and_display_pdf(pdf_path):

    # Initialize the PDF loader with the file path

    loader = PyMuPDFLoader(pdf_path)

    # Load the document into a list of pages

    documents = loader.load()

     # Iterate through each page and print the first 500 

characters

    for i, doc in enumerate(documents):

        print(f"--- Page {i + 1} ---\n")

         print(doc.page_content[:500])  # Print extracted 

text snippet

         print("\n" + "-" * 40 + "\n")  # Separator for 

readability

def load_and_display_html(html_path):

    # Initialize the HTML loader with the file path

    loader = UnstructuredHTMLLoader(html_path)

    # Load the document

    documents = loader.load()

     # Iterate through each document and print the first 500 

characters

    for i, doc in enumerate(documents):

        print(f"--- HTML Document {i + 1} ---\n")

         print(doc.page_content[:500])  # Print extracted 

text snippet

         print("\n" + "-" * 40 + "\n")  # Separator for 

readability
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def load_and_display_csv(csv_path):

    # Initialize the CSV loader with the file path

    loader = CSVLoader(csv_path)

    # Load the document into rows

    documents = loader.load()

     # Iterate through each row and print the first 500 

characters

    for i, doc in enumerate(documents):

        print(f"--- CSV Row {i + 1} ---\n")

         print(doc.page_content[:500])  # Print extracted 

text snippet

         print("\n" + "-" * 40 + "\n")  # Separator for 

readability

if __name__ == "__main__":

    # Define file paths

    pdf_path = "sample_pdf.pdf"

    html_path = "sample_html.html"

    csv_path = "sample_csv.csv"

    # Load and display content from each file type

    print("Loading pdf file......\n")

    load_and_display_pdf("sample_pdf.pdf")

    print("Loading html file......\n")

    load_and_display_html(html_path)

    print("Loading csv file......\n")

    load_and_display_csv(csv_path)

OUTPUT:

Loading pdf file......
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--- Page 1 ---

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Nunc ac faucibus odio......continued...

----------------------------------------

Loading html file......

--- HTML Document 1 ---

Sample HTML 1

Minime vero, inquit ille, consentit....continued...

----------------------------------------

--- CSV Row 2 ---

Industry: Advertising/Public Relations

---csv continued.....

LangChain is equipped with influential tools for integrating and 

processing a variety of input documents. These tools enable seamless data 

extraction and required data manipulations. Next, we explore how to 

use LangChain’s document loaders to load and parse various file formats. 

We can leverage these tools to effortlessly extract appropriate information 

and prepare the documents for further analysis or machine learning tasks.

 Document Transformers: Splitting Text 
for NLP Processing

• Overview: Demonstrates how to split text into 

sentences, words, and characters using LangChain.

• File handling: Loads text from sample_text.txt using 

LangChain’s TextLoader.
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• Sentence splitting: Uses CharacterTextSplitter with a 

period separator.

• Token splitting: Splits words based on whitespace.

• Character splitting: Converts text into individual 

characters for fine-grained analysis.

Listing 9-2 below depicts the program for Splitting Text  for NLP 

Processing Using Document Transformers

Listing 9-2. Code Demo for  Document Transformers

# IMPORT NECESSARY MODULES

from langchain.document_loaders import TextLoader

from langchain.text_splitter import CharacterTextSplitter

# LOAD TEXT FROM FILE USING LANGCHAIN'S DOCUMENT LOADER

loader = TextLoader("sample_text.txt", encoding="utf-8")

documents = loader.load()

document_text = documents[0].page_content  # EXTRACT 

TEXT CONTENT

# FUNCTION TO SPLIT TEXT INTO SENTENCES

def split_by_sentence(text):

     text_splitter = CharacterTextSplitter(separator=". ", 

chunk_size=1000)

    return text_splitter.split_text(text)

# FUNCTION TO SPLIT TEXT INTO WORDS

def split_by_word(text):

    return text.split()  # SIMPLE WORD SPLIT USING SPACE

# FUNCTION TO SPLIT TEXT INTO CHARACTERS
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def split_by_character(text):

    return list(text)  # CONVERT STRING TO LIST OF CHARACTERS

# DEMONSTRATING THE SPLITS

print("\n--- SPLIT BY PERIOD (SENTENCES) ---")

print(split_by_sentence(document_text))

print("\n--- SPLIT BY TOKEN (WORDS) ---")

print(split_by_word(document_text))

print("\n--- SPLIT BY CHARACTER ---")

print(split_by_character(document_text))

OUTPUT:

--- SPLIT BY PERIOD (SENTENCES) ---

['LangChain is a framework for developing applications powered 

by large language models.  \nIt helps with data retrieval, 

memory, and document processing.  \nAI agents use LangChain to 

handle conversations and reasoning.']

--- SPLIT BY TOKEN (WORDS) ---

['LangChain', 'is', 'a', 'framework', 'for', 'developing', 

'applications', 'powered', 'by', 'large', 'language', 

'models.', 'It', 'helps', 'with', 'data', 'retrieval,', 

'memory,', 'and', 'document', 'processing.', 'AI', 'agents', 

'use', 'LangChain', 'to', 'handle', 'conversations', 'and', 

'reasoning.']

--- SPLIT BY CHARACTER ---

['L', 'a', 'n', 'g', 'C', 'h', 'a', 'i', 'n', ' ', 'i', 's', 

' ', 'a', ' ', 'f', 'r', 'a', 'm', 'e', 'w', 'o', 'r', 'k', 

' ', 'f', 'o', 'r', ' ', 'd', 'e', 'v', 'e', 'l', 'o', 'p', 

'i', 'n', 'g', ' ', 'a', 'p', 'p', 'l', 'i', 'c', 'a', 't', 

'i', 'o', 'n', 's', ' ', 'p', 'o', 'w', 'e', 'r', 'e', 'd', ' 
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', 'b', 'y', ' ', 'l', 'a', 'r', 'g', 'e', ' ', 'l', 'a', 'n', 

'g', 'u', 'a', 'g', 'e', ' ', 'm', 'o', 'd', 'e', 'l', 's', 

'.', ' ', ' ', '\n', 'I', 't', ' ', 'h', 'e', 'l', 'p', 's',  

' ', 'w', 'i', 't', 'h', ' ', 'd', 'a', 't', 'a', ' ', 'r', 

'e', 't', 'r', 'i', 'e', 'v', 'a', 'l', ',', ' ', 'm', 'e', 

'm', 'o', 'r', 'y', ',', ' ', 'a', 'n', 'd', ' ', 'd', 'o', 

'c', 'u', 'm', 'e', 'n', 't', ' ', 'p', 'r', 'o', 'c', 'e', 

's', 's', 'i', 'n', 'g', '.', ' ', ' ', '\n', 'A', 'I', ' ', 

'a', 'g', 'e', 'n', 't', 's', ' ', 'u', 's', 'e', ' ', 'L', 

'a', 'n', 'g', 'C', 'h', 'a', 'i', 'n', ' ', 't', 'o', ' ', 

'h', 'a', 'n', 'd', 'l', 'e', ' ', 'c', 'o', 'n', 'v', 'e', 

'r', 's', 'a', 't', 'i', 'o', 'n', 's', ' ', 'a', 'n', 'd', 

' ', 'r', 'e', 'a', 's', 'o', 'n', 'i', 'n', 'g', '.', '\n', 

'\n', '\n', '\n']

9.1.2  Chains: Construct Sequences of Calls 
for Specific Tasks

The LLM Chains framework offers automation and optimization of 

workflows by connecting several AI-driven steps to perform complex 

tasks. In simple words, LLM Chains are used to connect different steps 

when using LLMs. LLM Chains help developers by breaking down big and 

complex tasks into more maintainable, smaller parts; this makes AI more 

accurate and useful in business applications, such as customer-facing 

chatbots, search engines, and work automation tools. LangChain helps 

developers integrate LLMs competently with any structured logic—be 

it technical or business applications. Modular applications, as in LLM 

Chains, enable better control and customization in applications by 

streamlining workflows.

AI application developers utilize LLM Chains to empower step- 

wise reasoning, prompt engineering, and contextual memory across 
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interactions, thereby creating more reliable and adaptive AI solutions. 

Businesses leverage LLM Chains for developing personalized 

recommendations, predictive analytics, and fraud detection. With its  

fast-growing adoption, LLM Chains is poised to transform multiple 

domains, including finance, healthcare, and e-commerce, with scalable 

AI-driven solutions. Figure 9-1 is an easy-to-understand schematic of how 

LLM Chains work in the context of business and scientific applications.

Figure 9-1. Schematic of LLM Chains

Next, we examine code demos that use LLM Chains for the 

development of useful applications for businesses.

 Business Document Processing: Summarization, 
Keyword Extraction, and Sentiment Analysis

This section focuses on processing different types of business documents 

to help understand their content quickly. It uses advanced tools to 

summarize important information from files like PDFs and spreadsheets. It 

also finds key words that highlight important topics for business decisions. 

Additionally, it analyzes customer feedback to understand their feelings 

and satisfaction levels. These automated methods make handling large 

amounts of business data faster and more accurate. The code demo of 

Business Document Processing is given in Listing 9-3.
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• Loads and processes diverse business documents (PDF, 

HTML, CSV) for analysis.

• Summarizes document content for quick business 

insights using GPT-3.5.

• Extracts key business-relevant keywords to aid 

decision-making.

• Performs sentiment analysis on customer feedback to 

gauge satisfaction.

• Provides efficient business document analysis through 

automated text processing.

Listing 9-3. Program to Demonstrate Business Document  

Processing

# Read the open ai api key from your text file

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_KEY.txt')

api_key = f.read()

import os

from langchain.document_loaders import PyPDFLoader, 

UnstructuredHTMLLoader, CSVLoader

from langchain.text_splitter import CharacterTextSplitter

from langchain_openai import ChatOpenAI  # Correct import for 

OpenAI Chat model

from langchain.prompts import PromptTemplate

from langchain.chains import LLMChain

# Load and parse documents

pdf_loader = PyPDFLoader("sample_pdf.pdf")

pdf_docs = pdf_loader.load()

html_loader = UnstructuredHTMLLoader("sample_html.html")

html_docs = html_loader.load()
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csv_loader = CSVLoader("sample_csv.csv")

csv_docs = csv_loader.load()

# Text Splitting for Processing

splitter = CharacterTextSplitter(chunk_size=500, chunk_

overlap=50)

pdf_chunks = splitter.split_documents(pdf_docs)

html_chunks = splitter.split_documents(html_docs)

csv_chunks = splitter.split_documents(csv_docs)

# Initialize the ChatOpenAI model with API key

llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=api_key)

# Summarization using OpenAI (Using LLMChain directly)

summary_prompt = PromptTemplate(

    input_variables=["text"],

     template="Summarize the following business 

document:\n{text}"

)

summary_chain = LLMChain(llm=llm, prompt=summary_prompt)

# Using .invoke() instead of .run()

pdf_summary = summary_chain.invoke({"text": pdf_chunks[0].page_

content})

html_summary = summary_chain.invoke({"text": html_chunks[0].

page_content})

csv_summary = summary_chain.invoke({"text": csv_chunks[0].page_

content})

print("\n--- PDF Summary ---\n", pdf_summary)

print("\n--- HTML Summary ---\n", html_summary)

print("\n--- CSV Summary ---\n", csv_summary)
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# Keyword Extraction using OpenAI (Using LLMChain directly)

keyword_prompt = PromptTemplate(

    input_variables=["text"],

     template="Extract the top 5 keywords from the following 

document:\n{text}"

)

keyword_chain = LLMChain(llm=llm, prompt=keyword_prompt)

# Using .invoke() instead of .run()

pdf_keywords = keyword_chain.invoke({"text": pdf_chunks[0].

page_content})

html_keywords = keyword_chain.invoke({"text": html_chunks[0].

page_content})

csv_keywords = keyword_chain.invoke({"text":  csv_chunks[0].

page_content})

print("\n--- PDF Keywords ---\n", pdf_keywords)

print("\n--- HTML Keywords ---\n", html_keywords)

print("\n--- CSV Keywords ---\n", csv_keywords)

# Sentiment Analysis for Business Insights (Using LLMChain 

directly)

sentiment_prompt = PromptTemplate(

    input_variables=["text"],

     template="Analyze the sentiment of the following 

customer feedback and rate as Positive, Neutral, or 

Negative:\n{text}"

)

sentiment_chain = LLMChain(llm=llm, prompt=sentiment_prompt)

csv_sentiment = sentiment_chain.invoke({"text": csv_chunks[0].

page_content})
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# Print the sentiment analysis output

print("\n--- CSV Sentiment Analysis ---\n", csv_sentiment['text'])

--- PDF Summary ---

 {'text': 'The document discusses Lorem ipsum dolor sit amet, 

consectetur adipiscing elit. It mentions various business 

activities such as marketing, sales, and customer service. 

It also includes a table with rows and columns for data 

representation.'}

--- HTML Summary ---

 {'text': 'The document discusses various topics, such as 

comparing medicine and governance to wisdom, the importance of 

speaking in a customary manner when discussing something, and 

whether enduring suffering increases happiness. It also raises 

questions about whether jokes, secrets, and hidden truths 

should be shared with everyone. The document concludes with a 

question about whether prolonged suffering ultimately leads to 

greater happiness.'}

--- CSV Summary ---

 {'text': 'The document likely discusses information related 

to the accounting and finance industry, which may include 

financial reporting, taxation, auditing, and other financial 

services. It may also cover industry trends, regulatory 

updates, and best practices for financial management.'}

--- PDF Keywords ---

 {'text': '1. Maecenas\n2. condimentum\n3. ipsum\n4. fringilla\

n5. ligula'}

--- HTML Keywords ---

 {'text': '1. Lorem\n2. Ipsum\n3. Dolor\n4. Sit\n5. Amet'}
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--- CSV Keywords ---

 {'text': '1. Accounting\n2. Finance\n3. Industry\n4. Top\n5. 

Keywords'}

--- CSV Sentiment Analysis ---

 "Great experience working with this accounting firm. Their 

team was knowledgeable, efficient, and professional. Will 

definitely be using their services again in the future."

Sentiment: Positive

9.1.3  Text Embeddings and Vector Databases

The NLP eco space has been transformed since the advent of text 

embeddings. Embeddings have changed the way machines interpret and 

process language. Conversion of text into high-dimensional numeric vectors 

helps to capture semantic relationships. This facilitates sophisticated text 

comprehension. NLP applications can’t capture contextual meanings using 

traditional keyword-based searches. But embeddings have successfully 

filled this gap. Text embeddings allow NLP models to retrieve information 

based on intent rather than exact wording. Understanding context becomes 

indispensable when it comes to tasks like semantic search, document 

similarity analysis, and intelligent retrieval systems.

Vector databases like ChromaDB can efficiently store and manage 

these text embeddings with adequate scaling capabilities. Vector databases 

help us in enabling quick and accurate similarity searches. This makes 

them best suited for retrieval-augmented generation (RAG) systems that 

are useful in AI-powered assistants and knowledge management systems. 

By integrating LangChain with OpenAI models, developers can effortlessly 

generate, store, and query embeddings for advanced NLP tasks. AI-driven 

applications are still evolving. Text embeddings and vector databases are 

going to have a central role in progressing smart search, recommender 

systems, and conversational AI.
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 Text Similarity Using OpenAI Embeddings 
and Cosine Similarity

Listing 9-4 below dipicts the program for Calculating Text Similarity Using 

OpenAI Embeddings and Cosine Similarity

Listing 9-4. Text Similarity Using OpenAI Embeddings and Cosine 

Similarity

# A simple demo of **text embeddings and similarity search 

using `OpenAI` embeddings **without using ChromaDB.

# This will show how text embeddings work without requiring a 

vector database.

"""

- Program: Text Embeddings & Similarity Search (No ChromaDB)

- Steps:

1. Convert text into **embeddings** using `OpenAI` API.

2. Store embeddings in a list (instead of ChromaDB).

3. Use **Cosine Similarity** to find similar texts.

"""

'\n\n- Program: Text Embeddings & Similarity Search (No 

ChromaDB)\n- Steps:  \n1. Convert text into **embeddings** 

using `OpenAI` API.  \n2. Store embeddings in a list (instead 

of ChromaDB).  \n3. Use **Cosine Similarity** to find similar 

texts.\n\n'

# Read the open ai API key from your text file

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_KEY.txt')

api_key = f.read()

# Importing necessary libraries

import openai  # OpenAI's Python client library to interact 

with its API
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import numpy as np  # NumPy for handling numerical computations 

and arrays

from sklearn.metrics.pairwise import cosine_similarity   

# Function to compute similarity between vectors

# Set your OpenAI API key (Replace 'api_key' with your actual 

API key)

openai.api_key = api_key  # This allows access to OpenAI's 

services

# Function to generate text embeddings using OpenAI's 

embedding model

def get_embedding(text):

     response = openai.embeddings.create(  # Request embeddings 

from OpenAI

         model="text-embedding-ada-002",  # Specify the 

embedding model

        input=[text]  # Input text must be passed as a list

    )

     return np.array(response.data[0].embedding)  # Extract and 

return the embedding as a NumPy array

# List of sample text data for embedding generation

texts = [

     "Artificial Intelligence is transforming industries.",   

# AI-related sentence

     "Machine learning helps in predictive analytics.",   

# ML-related sentence

     "Deep learning is a subset of machine learning.",   

# DL-related sentence

     "I love pizza and Italian food."  # Unrelated topic (food 

preference)

]
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# Convert each text in the list into an embedding using the 

get_embedding function

embeddings = [get_embedding(text) for text in texts]

# Convert the list of embeddings into a NumPy array for 

efficient processing

embeddings_matrix = np.array(embeddings)

# Compute cosine similarity between the first text embedding 

and all other embeddings

similarities = cosine_similarity([embeddings_matrix[0]], 

embeddings_matrix)

# Print similarity scores for each text compared to the 

first text

print("Similarity Scores with First Text:")

for i, score in enumerate(similarities[0]):  # Iterate over 

similarity scores

    print(f"{i}: {score:.4f} → {texts[i]}")  # Print index, 

similarity score, and corresponding text

Similarity Scores with First Text:

0: 1.0000 → Artificial Intelligence is transforming 

industries.

1: 0.8563 → Machine learning helps in predictive analytics.

2: 0.8294 → Deep learning is a subset of machine learning.

3: 0.7261 → I love pizza and Italian food.

"""

- How It Works:

1. Gets embeddings for each text using OpenAI’s `text- 

embedding- ada-002`.

2. Stores embeddings in a list (instead of ChromaDB).

3. Computes similarity using `cosine_similarity()` from 

`sklearn`.
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4. Prints similarity scores, showing which texts are most 

similar.

"""

'\n\n- How It Works:\n1. Gets embeddings for each text using 

OpenAI’s `text-embedding-ada-002`.  \n2. Stores embeddings in 

a list (instead of ChromaDB).  \n3. Computes similarity using 

`cosine_similarity()` from `sklearn`.  \n4. Prints similarity 

scores, showing which texts are most similar.  \n\n'

"""

- Expected Output:

Similarity Scores with First Text:

0: 1.0000 → Artificial Intelligence is transforming 

industries.

1: 0.8643 → Machine learning helps in predictive analytics.

2: 0.7892 → Deep learning is a subset of machine learning.

3: 0.1125 → I love pizza and Italian food.

```

- Higher scores mean more similarity. Unrelated text (pizza) 

gets a low score.

"""

'\n- Expected Output:\nSimilarity Scores with First Text:\n0: 

1.0000 → Artificial Intelligence is transforming industries.\

n1: 0.8643 → Machine learning helps in predictive analytics.\

n2: 0.7892 → Deep learning is a subset of machine learning.\

n3: 0.1125 → I love pizza and Italian food.\n```\n- Higher 

scores mean more similarity. Unrelated text (pizza) gets a low 

score.\n\n'
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9.2  AI Agents

LLM-based AI agents are intelligent systems powered by LLMs that can 

understand, generate, and process human language. They automate 

tasks, provide insights, and interact with users naturally. Such AI agents 

can be used to develop advanced chatbots, code assistants, automated 

content generators, customer support, data analysis, personalized 

recommendations, and process automation. These autonomous AI 

agents improve efficiency, reduce costs, and enable smarter decision-

making. Next, we examine a code demo to showcase the working of these 

agents. This code demo is self-sufficient in terms of explaining the code in 

sufficient detail.

 LangChain-Based Stock Analysis Agent

• IMPORT MODULES loads required modules for 

environment setup, data handling, and AI integration.

• SET API KEY stores the OpenAI API key in an 

environment variable.

• DEFINE STOCK LIST contains 50 real-world stock 

symbols.

• GENERATE STOCK DATA creates randomized stock 

market data for 10 days.

• CREATE DATAFRAME stores stock data in a pandas 

dataframe.

• FETCH STOCK DATA is a function that returns 

historical data for a given stock.

• ANALYZE STOCK TREND computes a simple moving 

average (SMA) and generates a buy/sell/hold signal.
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• DEFINE LANGCHAIN TOOLS

 – tool to fetch stock data

 – tool to analyze stock trends

• INITIALIZE OPENAI LLM creates an AI model 

instance with a set temperature.

• CREATE AI AGENT integrates LLM with the defined 

tools using LangChain.

• EXECUTE QUERY runs an agent command to analyze 

stock trends for a specific symbol (e.g., AAPL).

# Read the open ai API key from your text file

f = open('C:\\Users\\Shailendra Kadre\\Desktop\\OPEN_AI_KEY.txt')

api_key = f.read()

import os  # Import the os module to set environment variables

import random  # Import random module for generating dummy 

stock prices

from datetime import datetime, timedelta  # Import datetime for 

handling dates

from langchain.llms import OpenAI  # Import OpenAI LLM from 

LangChain

from langchain.agents import initialize_agent, AgentType   

# Import agent tools from LangChain

from langchain.tools import Tool  # Import Tool class to create 

custom LangChain tools

import pandas as pd  # Import pandas for data handling and 

analysis

# Set up your OpenAI API key (replace with your actual key)

os.environ["OPENAI_API_KEY"] = api_key
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# List of 50 real-world stock symbols

stocks = ["AAPL", "GOOGL", "AMZN", "TSLA", "MSFT", "NFLX", 

"META", "NVDA", "BABA", "DIS", "V", "JPM", "PYPL", "MA", "INTC", 

"IBM", "ORCL", "CSCO", "ADBE", "AMD", "UBER", "LYFT", "SQ", 

"SHOP", "TWTR", "SNAP", "PINS", "ZM", "DOCU", "ROKU", "BA", 

"GE", "CAT", "MMM", "F", "GM", "NKE", "KO", "PEP", "MCD","WMT", 

"TGT", "HD", "LOW", "COST", "PG", "JNJ", "MRNA", "PFE", "BMY"

]

# Generate dummy stock market data

num_days = 10  # Number of days per stock

start_date = datetime(2024, 1, 1)  # Start date

data = []  # Initialize empty list to store stock data

# Generate data for each stock over 10 days

for stock in stocks:

    for i in range(num_days):

        date = start_date + timedelta(days=i)  # Increment date

         open_price = round(random.uniform(100, 1000), 2)   

# Random open price

         high_price = round(open_price + random.uniform(5, 50), 

2)  # High slightly above open

         low_price = round(open_price - random.uniform(5, 50), 

2)  # Low slightly below open

         close_price = round(random.uniform(low_price, high_

price), 2)  # Close within range

         volume = random.randint(500000, 50000000)  # Random 

trading volume

        # This line adds a new row to a list called data

         data.append([date.strftime("%Y-%m-%d"), stock, open_

price, high_price, low_price, close_price, volume])

         # date.strftime("%Y-%m-%d") - Formats the date object 

into a YYYY-MM-DD string.
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# Create DataFrame

df = pd.DataFrame(data, columns=["Date", "Stock", "Open", 

"High", "Low", "Close", "Volume"])

# Function to get stock data for a specific symbol

def get_stock_data(symbol: str):

    return df[df["Stock"] == symbol].reset_index(drop=True)

    # Filter DataFrame for the given stock symbol

# Function to analyze stock trends based on SMA (Simple Moving 

Average)

def analyze_trend(stock_data):

     stock_data["SMA"] = stock_data["Close"].rolling(window=3).

mean()  # Calculate Simple Moving Average (SMA)

     latest_price = stock_data["Close"].iloc[-1]  # Get the 

latest closing price

     latest_sma = stock_data["SMA"].iloc[-1]  # Get the latest 

SMA value

    """

    `latest_price = stock_data["Close"].iloc[-1]`

    ### Explanation:

     - `stock_data["Close"]`: Extracts the "Close" column from 

the `stock_data` DataFrame, which contains closing prices 

of the stock.

     - `.iloc[-1]`: Selects the last row of the "Close" column, 

retrieving the most recent closing price.

    ### Purpose:

     This line gets the latest closing price of a stock from the 

given dataset.

    """
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    # Generate trading signal based on SMA comparison

    if latest_price > latest_sma:

        return "Buy signal: Price is above SMA"

    elif latest_price < latest_sma:

        return "Sell signal: Price is below SMA"

    else:

        return "Hold signal: Price is at SMA"

# Define a LangChain tool to fetch stock data

stock_data_tool = Tool(

    name="Stock Data Fetcher",  # Name of the tool

     func=lambda symbol: get_stock_data(symbol).to_string(),   

# Function to execute

     description="Fetches dummy stock data for a given 

symbol"  # Description of the tool

)

# Define a LangChain tool to analyze the stock trend

trend_analysis_tool = Tool(

    name="Stock Trend Analyzer",  # Name of the tool

     func=lambda symbol: analyze_trend(get_stock_

data(symbol)),  # Function to execute

     description="Analyzes stock trend and gives buy/sell 

signals"  # Description of the tool

)

# Initialize the LangChain LLM

llm = OpenAI(api_key=os.environ["OPENAI_API_KEY"], 

temperature=0.7)  # Create an instance of OpenAI model with 

moderate randomness

# Create the AI agent using LangChain

agent = initialize_agent(
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     tools=[stock_data_tool, trend_analysis_tool],   

# List of tools the agent can use

    llm=llm,  # Assign the LLM to the agent

     agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,   

# Specify the type of agent

    verbose=True  # Enable verbose output for debugging

)

# Example usage (replace with actual stock symbol)

response = agent.run("Analyze the trend for AAPL")   

# Run the agent with a query

print(response)  # Print the agent's response

> Entering new AgentExecutor chain...

 I should use the Stock Data Fetcher to get the stock data 

for AAPL

Action: Stock Data Fetcher

Action Input: AAPL

Observation:    Date Stock  Open  High   Low  Close    Volume

0  2024-01-01  AAPL  950.12  957.85  900.64  901.40  15083224

1  2024-01-02  AAPL  525.51  549.66  477.65  518.36  14434448

2  2024-01-03  AAPL  907.62  919.88  863.87  898.99  15286254

3  2024-01-04  AAPL  857.77  875.54  849.98  857.14  35041104

4  2024-01-05  AAPL  941.17  974.03  924.63  934.36  33134796

5  2024-01-06  AAPL  552.19  565.87  529.39  546.66   2792180

6  2024-01-07  AAPL  953.96  960.45  943.50  958.87  41613530

7  2024-01-08  AAPL  482.18  525.64  469.70  485.87  14577853

8  2024-01-09  AAPL  341.44  369.70  319.75  367.96  23713339

9  2024-01-10  AAPL  546.23  564.76  536.35  550.44  27605642

Thought: Now that I have the stock data, I can use the Stock 

Trend Analyzer to analyze the trend for AAPL

Action: Stock Trend Analyzer

Action Input: AAPL
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Observation: Buy signal: Price is above SMA

Thought: Based on the buy signal, it seems like a good time to 

invest in AAPL

Final Answer: It may be a good idea to buy AAPL based on the buy 

signal from the Stock Trend Analyzer. However, further research and 

analysis should be done before making any investment decisions.

> Finished chain.

It may be a good idea to buy AAPL based on the buy signal 

from the Stock Trend Analyzer. However, further research and 

analysis should be done before making any investment decisions.

 The Role of LLM and Agents in This Code

 Role of LLM (Large Language Model)

• llm = OpenAI(api_key=os.environ[″OPENAI_API_

KEY″], temperature=0.7):

 – This initializes the OpenAI language model (LLM) using 

LangChain.

 – The model is used to process user queries, interpret them, and 

generate responses.

 – The temperature=0.7 allows for a balanced mix of determin-

istic and creative responses.

 Role of Agents

• agent = initialize_agent(...):

 – The agent acts as an AI-powered assistant that interacts with 

users and selects the right tools to answer their queries.
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 – It uses ZERO_SHOT_REACT_DESCRIPTION, meaning it decides 

dynamically which tools to use based on the query.

 – The agent can

a. Fetch stock data using stock_data_tool.

b. Analyze stock trends using trend_

analysis_tool.

 Final Workflow

• When a user asks, “Analyze the trend for AAPL”, 

the agent

 a. Identifies that stock analysis is needed.

 b. Fetches AAPL stock data using stock_data_tool.

 c. Runs trend analysis using trend_analysis_tool.

 d. Generates a response (e.g., “Buy signal: Price is 

above SMA”).

9.3 Chapter Recap

This chapter explains the advanced techniques for creating various 

NLP applications using LangChain and OpenAI. At the beginning of 

this chapter, the significance of connecting to various data sources is 

discussed. A detailed explanation is included for integrating document 

loaders, transforming documents, and working with text embeddings and 

vector databases like ChromaDB. For building NLP applications, data 

is available in multimodal data sources. This can include both text and 

images. Efficient handling of these multimodal data sources is required for 

optimal data retrieval from multiple data sources. This is achieved by pre-

processing and indexing for more efficient querying.

Chapter 9  advanCing with LangChain and Openai



438

Next, this chapter introduces the concept of chains, which are the 

sequence of tasks that are designed to achieve specific goals. In this 

section, the creation of different types of chains, simple and multi-step 

chains are explained. LangChain is used to handle function calls. Various 

approaches are also discussed to optimize chains and to handle errors. For 

showcasing automatic workflows, practical examples are also provided.

In the later part of this chapter, the concept of memory and its 

management is discussed to allow the applications to retain their state 

between different runs. Various types of memory are also discussed, along 

with the management of user and AI interactions. Implementing both 

short-term and long-term memory solutions improves conversational 

applications by enhancing contextual understanding.

At the end of the chapter, a separate focus is provided on agents—

dynamic tools capable of performing tasks automatically. A detailed 

explanation is provided for agents on how interactive AI agents work and 

methods for building domain-specific agents to tackle complex tasks. 

Detailed guidelines are provided on deploying LangChain applications in 

production. Their key aspects related to scaling them for high demand and 

ensuring their reliability through monitoring and maintenance are also 

covered in this chapter.
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CHAPTER 10

Case Study on 
Symantec Analysis

10.1  Introduction

Since 2006, the world has witnessed a data explosion, which finds an 

explanation in the “humanity and technology on the second half of the 

chessboard” (Brynjolfsson and McAfee 2011).1 Data proliferation has 

led to an increasing shift in marketing communications, as witnessed 

on online platforms (Sheth and Kellstadt 2020),2 along with advocacy by 

the user community in the form of reviews. This has led to an explosion 

of unstructured data, primarily in the form of text messages, resulting in 

inferential statistics being increasingly supplemented by non-inferential 

approaches, such as natural language processing (NLP), a technique used 

by computers to understand and generate human language so that large 

amounts of text data can be analyzed for insights.

This chapter, however, examines semantic analysis—a crucial 

component of NLP, which helps humans understand the intended 

meaning of words, moving beyond a mere analysis of a sentence’s 

composition and how companies are leveraging this. Semantic analysis 

helps in the understanding of the text’s main idea, highlighting the 

relationships between the words used and the sentences constructed. 
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In other words, it helps humans comprehend written text beyond its 

grammatical structure by examining context and word relationships to 

derive deeper insights from the written language.

Finding the intended meaning of words, phrases, and sentences 

beyond their obvious meaning is nothing new. Semantics finds its roots in 

the thinking of Plato. In his dialogue Cratylus,3 Plato talks about words as 

“symbols of ideas” associated with them instead of being “crude imitations 

of other natural sounds.” He discussed the idea that words have a natural 

connection to the things they signify. The formal study of semantics began 

to take shape in the late 19th and early 20th centuries. Michel Bréal, a 

French philologist, is credited with coining the term “semantics” in 1883.4 

He explored the structure of languages, their evolution over time, and the 

relationships between them. In simple terms, semantics focuses on the 

study of language and its meaning. At the same time, semantic analysis 

enables computers to accurately determine the context of words or 

phrases that can be interpreted in multiple ways.

In the mid-20th century, the formalization of the study of semantics 

began to take shape in the field of linguistics. Noam Chomsky’s work on 

generative grammar in the 1950s laid the groundwork for understanding 

how syntax (the structure of sentences) and semantics (the meaning 

of sentences) are related. Around the same time, Richard Montague5 

applied mathematical logic to the study of natural language semantics. 

He proposed Montague semantics, a theory based on natural language 

semantics and its relation to syntax.

The advent of computers and the development of programming 

languages in the middle of the 20th century opened new possibilities for 

the study of semantics. Robert W. Floyd’s 1967 paper6 on programming 

language semantics is often given credit for introducing the field of 

programming language semantics. Floyd explained programming 

languages as having two parts: semantics (i.e., meaning and syntax ), and 

emphasized the importance of precisely encoding these elements so that 

computers could process them automatically.
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It was not until the late 1990s that the Semantic Web concept was 

proposed by Tim Berners-Lee. This was a major advancement in the field 

of semantic analysis. The Semantic Web was the first attempt to make web 

content accessible to machines through structured metadata descriptions 

and ontologies to give meaning to data. This formed the basis for the 

development of standards such as the Resource Description Framework 

(RDF) and the Web Ontology Language (OWL), which are used to 

represent and reason about data on the web.

It is important to mention that owing to the explosion of text messages, 

analyzing them to derive meaningful conclusions is not that easy. This 

is because data proliferation has occurred on a scale where data is in 

search of techniques, rather than techniques in search of data (Sheth and 

Kellstadt, 2020).

This is despite advances made in natural language processing in 

recent years, which have boosted the field of semantic analysis, enabling 

computers to understand and generate human language, and making 

it possible to analyze large volumes of text data for valuable insights. 

Machine learning algorithms, especially deep learning models such as 

transformers, have significantly improved the accuracy and efficiency of 

semantic analysis.

Despite techniques trying to catch up with data, there are successful 

models of companies that use semantic analysis to make insightful 

decisions. This chapter attempts to explore the future of semantic analysis, 

which is likely to be more robust and scalable, shaped by advancements in 

AI and machine learning.

10.2  Methods of Semantic Analysis

Semantic analysis allows computers to understand the right meaning 

of words or phrases with more than one meaning, which is crucial to 

the accuracy of text-based NLP applications. The technology not only 
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processes information but also recognizes the connections between pieces 

of information to decipher massive amounts of data and implement them 

in the real world. Semantic analysis uses a variety of methods to interpret 

the meaning of text data. Among the most prominent ones is latent 

semantic analysis.

10.2.1  Latent Semantic Analysis

Latent semantic analysis (LSA) is a natural language processing method 

that analyzes relationships between a set of documents and the words 

within them. LSA is particularly useful for applications like information 

retrieval and text summarization. It identifies hidden or “latent” 

associations between terms and concepts in unstructured data. LSA 

operates on the principle that words appearing in similar contexts tend 

to share meanings. This allows the technique to infer word significance 

within text by analyzing patterns of co-occurrence.

LSA is also referred to as latent semantic indexing (LSI). LSA/LSI use 

singular value decomposition (SVD) to reduce the dimension of the Term- 

Document matrix, which helps in extracting semantic structures from 

large document collections.

10.2.1.1  How LSA Works

LSA follows several key steps.

 Term-Document Matrix

The process begins with constructing a term-document matrix that 

captures word frequency across multiple documents. Each row represents 

a unique word, while each column corresponds to a document. The matrix 

values indicate the number of times a word appears in a given document. 
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For example, if the term “target” appears two times in document X, then 

the matrix entry [target, X] = 2. Consider the following three text excerpts to 

understand how a term-document matrix functions.

d1: The salesman achieved the target

d2: The company motivated the salesman

d3: The target achieved helped the company

A term-document matrix for these sentences may look like Table 10-1.

Table 10-1. Term-Document Matrix

Term d1 d2 d3

salesman 1 1 0

achieved 1 0 1

Target 1 0 1

company 0 1 1

motivated 0 1 0

 Singular Value Decomposition

Singular value decomposition (SVD) is a mathematical method used to 

reduce the dimensionality of the term-document matrix while preserving 

relationships between words and documents. This transformation 

condenses the original matrix into a smaller representation that captures 

essential semantic patterns. SVD is used in LSA to identify hidden 

relationships between terms and concepts within unstructured data. 

The following illustration of the use of SVD in Semantic Analysis, with 

an example of an online retailer analyzing customer reviews, helps you 

understand the concept of SVD better.
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An online retailer, eMart, hired an analyst to interpret customers 

feedback on its products. They collected customer reviews for three 

popular products: smart TVs, earbuds, and a smartwatch. The consultant 

used SVD to identify the key aspects (topics) that customers discuss in 

relation to these products.

 Step 1. Data Collection and Preprocessing

eMart collects the following simplified customer reviews.

• Review 1 (smart TV): “The picture quality is amazing, 

and the sound is great. Very happy with my new TV!”

• Review 2 (smart TV): “I love the big screen and clear 

picture. The smart features are very useful.”

• Review 3 (earbuds): “The sound quality is fantastic. 

These are very comfortable to wear.”

• Review 4 (earbuds): “Great bass and noise-canceling. 

The battery life is also excellent in these Earbuds.”

• Review 5 (smartwatch): “The fitness tracking is 

accurate. The battery life is good, and the watch looks 

stylish.”

• Review 6 (smartwatch): “I use the heart rate 

monitor every day. It’s a great fitness tracker and a 

beautiful watch.”

After preprocessing (tokenization, lowercasing, stemming, and 

removing stop words), the following are key terms.

picture quality sound TV big screen clear picture

smart features sound quality comfortable bass noise-canceling

battery life fitness tracking watch heart rate monitor fitness tracker
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 Step 2. Creating the Term-Document Matrix

A term-document matrix where rows represent terms and columns 

represent reviews is shown in Table 10-2.

Table 10-2. Term-Document Matrix

Term Review 1 Review 2 Review 3 Review 4 Review 5 Review 6

picture quality 1 0 0 0 0 0

sound 1 0 0 0 0 0

tv 1 0 0 0 0 0

big screen 0 1 0 0 0 0

clear picture 0 1 0 0 0 0

smart features 0 1 0 0 0 0

sound quality 0 0 1 0 0 0

comfortable 0 0 1 0 0 0

bass 0 0 0 1 0 0

noise-canceling 0 0 0 1 0 0

battery life 0 0 0 1 1 0

fitness tracking 0 0 0 0 1 1

watch 0 0 0 0 1 1

heart rate 

monitor

0 0 0 0 0 1

fitness tracker 0 0 0 0 0 1
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 Step 3. Applying SVD

We apply SVD to the term-document matrix (A).

A=UΣVT

Using Python and NumPy (or similar tools), we perform SVD.
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 Step 4. Dimensionality Reduction

We decide to keep the top two singular values (k=2). The singular values 

in S tell us the importance of each dimension (topic). Let’s assume after 

running SVD, the first two singular values are significantly larger than the 

rest, indicating they capture most of the variance in the data.

We reduce Σ to a k×k matrix. We also truncate U and VT to keep only 

the first k columns and rows, respectively.

 Step 5. Topic Interpretation

The interpretation of the results can be done by examining the reduced U 

and VT matrixes.

Ureduced:
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• Each row in Ureduced corresponds to a term from the 

term-document matrix.

• Each column represents a latent topic or concept.

• Terms related to smart TVs (picture quality, sound, 

TV): The first three rows have negative values in the 

first column, suggesting that the first column captures 

the smart TV concept.

• Terms related to earbuds (sound quality, comfortable, 

bass, noise-canceling): The next four rows (4-7) have 

either positive or negative values in the second column, 

indicating that the second column captures wireless 

headphone feature concepts.
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• Terms related to smartwatch (battery life, fitness 

tracking, watch, heart rate monitor, fitness tracker): The 

final set of rows shows very small or zero values in the 

reduced U matrix.

 Conclusions

SVD, therefore, helped eMart automatically extract key topics from 

customer reviews, even when the reviews have used varied language. This 

automated topic discovery enables them to make data-driven decisions to 

improve their business.

• Topic popularity: By summing the singular values 

associated with each topic, eMart can understand 

which product is being discussed more frequently.

• Customer concerns: By analyzing the terms most 

associated with each topic, they can identify key 

customer concerns. For instance, if “battery life” is a 

strong term in the “smartwatch” topic, they know it’s a 

crucial factor for customers.

• Product improvement: These insights can be used 

to enhance product design, address specific customer 

pain points, and refine marketing messages.

As you can be understand from this eMart example, the SVD has 

successfully identified two key underlying topics: smart TV features and 

earbuds features. eMart can now use these two topics to better understand 

customer preferences and improve product offerings.
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 Dimensionality Reduction

Dimensionality reduction is the process in which the complexity of the 

semantic data is simplified. It simplifies the process of data analysis while 

retaining the important points of the data, making the whole process more 

efficient. Dimensionality reduction is achieved by lowering the rank of 

the matrix, which eliminates irrelevant features that can introduce noise 

and mitigates sparsity, thereby improving performance. It improves the 

efficiency of computing large datasets by speeding up data analysis. By 

merging dimensions associated with similar terms, the technique can 

recognize synonymy and latent relationships between words.

For example, while going through customer feedback, instead of 

looking at each word, if the focus is on the most frequently used words, the 

most frequently used positive words, or the most frequently used words 

criticizing the product, or neutral words, it helps understand the overall 

sentiment of the customers much better.

 Cosine Similarity

After reducing matrix dimensions via SVD, LSA compares documents 

in a transformed semantic space using cosine similarity. This technique 

measures the degree to which documents align based on their vector 

representations. Similar documents have cosine values closer to 1, 

whereas dissimilar ones have values near 0. This measure is particularly 

valuable in fields such as data mining, natural language processing, and 

machine learning.

Mathematically, cosine similarity is defined as follows.

cosine similarity (A, B) = (A.B)/|A||B|

• A·B is the dot product of vectors A and B.

• |A| and |B| are the magnitudes (or norms) of vectors 

A and B.
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The value of cosine similarity ranges from –1 to 1.

• 1 indicates that the vectors are identical (0 

degrees apart).

• 0 indicates orthogonality (90 degrees apart), meaning 

no similarity.

• –1 indicates that the vectors are diametrically opposed 

(180 degrees apart).

To calculate cosine similarity, first, the dot product of the two vectors 

is to be calculated. This should be followed by the calculation of the 

magnitude of each vector. Then, the dot product is to be divided by the 

product of the magnitudes to arrive at the cosine similarity. Let’s try to 

better understand this with the help of an example.

Consider two statements represented as vectors based on word 

frequency.

• A: “Smart TV has good picture quality”

• B: “Smart TV has good sound quality”

First, we convert these documents into numerical vectors (Table 10-3) 

based on their unique words.

Unique words: [Smart TV, has, good, picture, quality, sound]
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Table 10-3. Convert these documents 

into numerical vectors

Unique Words A B

Smart 1 1

TV 1 1

Has 1 1

Good 1 1

Picture 1 0

Quality 1 1

Sound 0 1

Vector of A = [1,1,1,1,1,1,0]

Vector of B = [1,1,1,1,0,1,1]

 1. Calculate the dot product.

 A B. 1 1 1 1 1 1 1 1 1 0 1 1 0 1 5 

 2. Calculate the magnitude of each vector.

|A| = 1 1 1 1 1 1 0
2 2 2 2 2 2 2+ + + + + +  = 6

|B| = 1 1 1 1 0 1 1
2 2 2 2 2 2 2+ + + + + + = 6

 3. Calculate the cosine similarity.

 

A B.

| || |
.

A B

5

6 6
0 833

 

The cosine similarity (0.833) indicates that A and B have a high degree 

of similarity in terms of the words they use, even though they describe 

different aspects of a smart TV.
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 LSA Applications

• Concept-based search enhances search engines by 

retrieving relevant results even if exact keywords differ.

• Automated document categorization groups text into 

thematic clusters.

• Information retrieval improves indexing 

by associating documents with semantically 

similar words.

• Text summarization extracts key points from 

lengthy texts.

• Subjective question evaluation assesses written 

responses based on their semantic content.

• Literature-based discovery finds hidden connections 

between research topics.

Among the other methods of text analytics interpretation are explicit 

semantic analysis, word embeddings, neural network-based models, 

ontology-based models, and the bag-of-words model.

10.3  Role of Semantic Analysis in 
Enhancing Customer Experience: A 
Case Study Fujitsu’s Kozuchi AI Agent

10.3.1  About Fujitsu

Founded in 1935, Fujitsu Limited, a global leader in information and 

communication technologies (ICT), has been innovating in ICT for the 

last nine decades. A long list of pioneering achievements and innovative 
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products has helped Fujitsu become a leading company in the ICT 

industry. From telecommunications equipment manufacturers making 

switching systems and transmission equipment to support telephone 

service networks, Fujitsu also found use for these systems in the 

transmission of computer data.

Two decades later, the company developed FACOM 100, Japan’s first 

practical relay-type computer, leading to Fujitsu growing to become the 

country’s leading computer manufacturer. Sensing opportunity, Fujitsu 

forayed into a wide variety of computers, including business computers for 

office work automation and small-sized, full-featured personal computers. 

Fujitsu also began developing software that included Japanese word 

processors specifically designed for creating documents.

In the early 1990s, Fujitsu recognized the need to address operation- 

specific issues faced by consumers and began providing comprehensive 

solution services, offering complete support from consulting to system 

construction and management.

In the new millennium, ICT started playing a more dominant role in 

all spheres of our lives, leading to the creation of much more advanced 

smartphones in the second half of the first decade. This ushered in an era 

that provided another opportunity for Fujitsu to contribute to business and 

society through high-performance and high-capacity data centers, servers, 

and mobile networks supporting smartphones. Apart from selling  high- 

technology products, Fujitsu worked toward solving customer’s problems. 

By bringing the Internet into every aspect of society, Fujitsu launched 

a new business strategy under the slogan “Everything on the Internet” 

in 1999.7

Over the last ninety years, Fujitsu has been resolving consumer 

problems and has made immense contributions to society through its 

technology solutions. With the advent of AI, the company has been 

working toward creating a rewarding and secure networked society, 

thereby bringing about a prosperous future that aims to fulfill the dreams 

of people globally.
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10.3.2  AI Initiatives of Fujitsu

On October 23, 2024, Fujitsu launched the Fujitsu Kozuchi AI Agent, 

a proprietary cloud-based AI service that can engage in numerous AI 

services by working independently and in collaboration with humans.

Kozuchi, in Japanese, means ”magic hammer,” referring to a legendary 

Japanese hammer that can create anything wished for. Kozuchi AI Agent 

represents AI capabilities, which Fujitsu claims can fulfill any business 

requirement. The following seven AI services are offered by the Kozuchi AI 

Agent (see Figure 10-1).

• Fujitsu Kozuchi Generative AI: Like other GenAI tools, 

it enhances human productivity and creativity by acting 

as a bridge between humans and computers for natural 

language and unstructured data.

Figure 10-1. Fujitsu Kozuchi AI Agent (this pictorial representation 
has been created by the authors using napkin.ai)

• Fujitsu Kozuchi AutoML: This service helps generate 

high-precision machine learning models in a very 

short span of time. Fujitsu Kozuchi AutoML helps 

automatically generate AI functions for customer 

businesses when provided with business issues in 

natural language. It has the ability to convert business 
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issues into the most suitable mathematical models. 

The mathematical model is then converted into an 

appropriate AI function for the customer’s business.

• Fujitsu Kozuchi Predictive Analytics: This service 

creates high-accuracy demand forecasting models 

using available data to cater to the changing 

requirements of customers for various products and 

aligning it automatically without the need for any 

human being to intervene.

• Fujitsu Kozuchi for Text: This service helps analyze 

text after it has been digitized using NLP techniques. 

Later in this chapter, we focus on Fujitsu Kozuchi for 

Text, along with other services of the Fujitsu Kozuchi 

AI Agent, to understand how the AI Agent performs 

semantic analysis that goes beyond text analytics.

• Fujitsu Kozuchi for Vision: This service converts visual 

elements through a list of 100 pre-trained basic actin 

models and behavior recognition rules to recognize 

complex human behaviors.

• Fujitsu Kozuchi AI Trust: This service allows 

verification of AI fairness, quality, and security with just 

a few clicks from a web browser. It also provides the 

much-needed service of quality and ethical standards 

met by the AI tools. It improves the AI literacy of 

the users, helping them assess accuracy, fairness, 

copyright compliance, data management, and misuse 

prevention.

• Fujitsu Kozuchi XAI: This service deciphers the causal 

relationships behind AI-generated results. Through 

comprehensive computation of huge datasets, Kozuchi 
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Explainable AI ensures that no meaningful causal 

relationships are missed, thereby delivering reliable 

insights every time.

10.3.3  Fujitsu Kozuchi for Semantic Analysis

Fujitsu Kozuchi is a proprietary cloud-based AI platform offering wide-

ranging solutions across seven AI domains to help business transformation. 

This section examines one critical analytical function of the platform: 

semantic analysis capabilities. Semantic analysis capabilities enable 

organizations to derive meaningful insights from unstructured textual data.

Fujitsu Kozuchi’s approach to semantic analysis goes beyond basic 

text processing by integrating with other services in the Kozuchi platform, 

thereby creating an all-inclusive ecosystem that can handle large volumes 

of unstructured text data. This service demonstrates Fujitsu’s remarkable 

advancement from interactive to proactive AI capabilities, excelling at 

transforming abstract conversational concepts into actionable tasks. 

It integrates the proprietary processing logic of the Kozuchi AI Agent 

with advanced AI models, including Takane, a large language model for 

enterprises that offers the highest Japanese language proficiency in the 

world,8 Fujitsu AutoML, and also leverages Microsoft’s Semantic Kernel. 

This open-source development kit enables users to easily build AI agents 

and integrate the latest AI models into their C#, Python, or Java codebase.

Fujitsu Kozuchi enhances business decision-making and boosts 

productivity. This integration helps Kozuchi to execute complex semantic 

interpretations of natural language inputs, beyond the literal content to 

the contextual meaning, purpose, and relationships between concepts 

expressed in text, all of which are achieved without any human input.

To understand how the Kozuchi AI Agent works, let us look at the 

following example, where the Kozuchi AI Agent is attending a meeting 

with some humans and listening to the conversations between humans. It 

proactively gives its suggestions.
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10.3.3.1  Exhibit X.1: Kozuchi AI Agent Attending 
a Meeting: An Example

Miriam Graham: “Today, I’d like to review business 

trends. Recently, I’ve been hearing that deals in Asia 

are not going well.”

Alex Wilber: “No, I think Asia is fine. I’ve heard we 

lost a few small deals, but I don’t think it’s affecting 

the big picture.”

Miriam Graham: “I know Dan, the head of Asia, 

has said as much, but apparently, the numbers show 

otherwise.”

Alex Wilber: “Oh, you’re right. The numbers are 

different. Maybe the large deal we recently secured 

hasn’t been accounted for yet. Let me check with Dan 

right away.”

While the two executives were talking, Kozuchi AI Agent, who was 

unobtrusively present in the meeting, came up with additional data. It 

analyzed available data and proactively directed the team to perform sales 

analysis in the Asia region. The result presented clear, logical reasons for 

discrepancy across the two divergent views. The AI agent comes up with 

the following.

Fujitsu Kozuchi AI Agent: “Let’s get a more accurate 

understanding of the current situation by checking 

the actual number of business negotiations and 

changes in sales figures in the Asia region. The 

graphical representation showed that the sales 

revenue in the Asia region became half in 2024 as 

compared to 2023.”
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The AI Agent does not stop at this. Instead, it conducts an in-depth 

analysis to examine what is happening in other regions. For example, it 

provides a graphical representation of sales revenue for the same quarter 

of both the current and previous financial years for all other regions in 

which the company operates. This way, much better-informed decisions 

can be made during the meeting. Depending on the discussions, 

Kozuchi may also assist with other data to determine the reason behind 

this revenue decline. Kozuchi handles all these tasks autonomously, 

supporting the uninterrupted flow of the meeting and contributing to 

increased productivity.

10.3.4  Business Applications of Fujitsu 
Kozuchi and Its Superiority over Other 
Similar Tools

Kozuchi’s semantic analysis capabilities are built around Takane, which 

enables it to perform intelligent semantic interpretation of natural 

language inputs. As mentioned, the semantic capabilities extend beyond 

literal context to emphasize contextual relationships between entities, 

implied meaning, intent, and conversational nuances, besides highlighting 

domain-related terminologies and jargon.

On the other hand, Kozuchi’s semantic analysis has its uniqueness 

in its autonomous operational abilities. Exhibit X.1 illustrates how this 

AI Agent actively analyzes ongoing discussions, identifies key points and 

action items, and selects appropriate data and models to provide specific 

inputs without even being asked to do so. This is a major difference 

between other reactive query-response systems and the proactive 

semantic insight of Kozuchi AI Agent. As shown in Exhibit X.1, the Kozuchi 

AI Agent can interpret meeting discussions in real-time without any 

human intervention, identify information gaps or differences of opinions/

interpretations by humans present in the meeting, offer insights to address 
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those uncertainties by proactively analyzing all relevant data and data 

sources and offer actionable task lists based on its grasping of important 

semantics used during the conversation.

The Kozuchi AI Agent can also integrate “knowledge-graph extended 

retrieval-augmented generation (RAG)” software9 into its text analysis 

process. Linking knowledge graphs to textual data helps retrieve company 

knowledge in a structured manner, improving logic-based inferences and 

contextual understanding. This is achieved by “automatically generating 

knowledge graphs [based] on vast amounts of data, such as laws and 

company regulations, company manuals, and videos.”10 All of these 

make Fujitsu Kozuchi AI Agent a specialist generative AI for enterprises, 

as opposed to the general-purpose interactive large language models 

deployed in the consumer space.

Among the applications of Kozuchi are customer review analysis, 

compliance monitoring by analyzing large sets of contracts or other 

legal documents, improving operational excellence, and tracking market 

intelligence by processing expert reviews on various social media 

platforms or feedback from journalists in newspapers and TV. Fujitsu 

expects its Kozuchi AI Agent to deliver a 25% improvement in “support 

desk work efficiency” and a 95% reduction in the time for planning driver 

allocation in the transport industry.11

10.4  Future Trends in Semantic Analysis

Semantic analysis is evolving at a rapid pace. This growth is driven 

by technological innovations, increased computational capabilities, 

growing data complexity, cross-disciplinary applications, and expanding 

application domains. We now turn our focus to examining the future 

trends in semantic analysis. Our focus would be on applications in 
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emerging areas, keeping a close eye on technological developments. The 

following are some of the future trends in semantic analysis.

• Adaptive semantic frameworks or systems that self- 

learn and update fundamental structures based on 

real-world data.12 These frameworks are particularly 

transformative in activities requiring real-time process 

optimization and compliance assurance.

• Ethical semantic engineering involves applying 

ethical considerations, including a bias-free 

environment, fairness, transparency, accountability, 

and respect for individual privacy, to the design, 

development, and implementation of semantic 

technologies and systems. This is done so that 

society can utilize machines to give meaning to 

data and information in a manner similar to human 

understanding. This is extremely important, as the 

increasing capabilities of semantic analysis also 

increase the possibility of data misuse.

 The development of technology for semantic analysis 

and the use of the analysis should, therefore, be done 

ethically since not doing that can cause irreparable 

damage to society. To understand it better, consider, 

for example, the damage that can be done in highly 

sensitive fields like healthcare and the criminal justice 

system, where very high ethical standards must be 

maintained alongside a precise understanding of 

technical terminology and relationships.13

• Multimodal semantic integration performs a 

combined analysis of information from multiple 

sensory or communicative modes, such as text, 
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numbers, images, audio, and video, to create an 

integrated representation of data. The primary 

objective of multimodal semantic integration is to 

develop a system that can process information from 

diverse sources and types to provide comprehensive, 

accurate, and impactful insights.14

 Conclusion

Semantic analysis is continuously evolving along multiple dimensions 

concurrently. Methodological advances and technological innovations 

have developed the capabilities of semantic analysis beyond simple text 

extraction to analysis based on complex reasoning. The future of semantic 

analysis most likely lies in hybrid approaches combining knowledge-

based methods with data-driven techniques. As this domain continues to 

mature, we can expect AI-based technologies to become more advanced 

in their analysis of linguistic nuances, more efficient in their processing 

capabilities, and more widely applied across diverse domains. These 

developments are expected to collectively transform how meaning is 

extracted from and how language-based information systems interact with 

each other.
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